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ABSTRACT

Evaluating a classifi er's performance is critical for its successful application. This paper explores various 
metrics used for binary classifi cation tasks, highlighting their strengths and limitations.
Simple threshold metrics, such as Accuracy and Sensitivity, are effi cient for binary data and a single cutoff 
point. However, their reliance on a single threshold and sensitivity to imbalanced data can be drawbacks.
For more robust evaluation, ranking metrics such as Receiver Operating Characteristic (ROC) and Preci-
sion-Recall (PR) curves provide a threshold-agnostic approach, enabling comparison across different cutoff 
points. Additionally, probabilistic metrics like Brier Score and Log Loss assess the model's ability to predict 
class probabilities.
The choice of metric depends on the specifi c classifi cation problem and the characteristics of the data. 
When dealing with imbalanced data or complex decision-making processes, using multiple metrics is rec-
ommended to gain a comprehensive understanding of the model's performance.
This paper emphasises the importance of understanding metric limitations and of selecting appropriate 
metrics for a specifi c classifi cation task. By doing so, researchers and practitioners can ensure a more accu-
rate and informative evaluation of their models, ultimately leading to the development of reliable tools for 
various applications.

Introduction

In today's data-driven world, accurately distin-
guishing between healthy and sick individuals 

is crucial across various sectors. Diagnostic 
tests play a vital role in medicine, public health, 
and research by enabling objective evaluation 
of patients and the diagnosis of conditions [1]. 
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With challenges like the COVID-19 pandem-
ic, there's a growing awareness of the need 
for accurate diagnostic tests and continual 
improvement [2,3].

There is a vast array of diagnostic tests (clas-
sifi ers), each with its own set of quality metrics. 
Choosing the appropriate metric depends on sev-
eral factors. 

First, the disease prevalence must be consid-
ered. Is the disease common or rare in the popu-
lation being tested? Screening tests for diseases 
with low prevalence, like mammograms for breast 
cancer, use different metrics than tests for sus-
pected cases. Secondly, the type of variable mea-
sured by the test is crucial. Can the test result be 
a number (e.g., body temperature), an ordered 
category (e.g., mild pain), or something else (e.g., 
gender or smoking status) [4]? Thirdly, the pur-
pose of the test must be determined. Are we sim-
ply classifying someone as healthy or sick, or are 
we trying to predict future health outcomes, like 
dead or alive?

Classifi cation vs. Prediction: Two Sides of 
the Same Coin 
Classifi cation and prediction are closely linked. 
While we often think of classifying things in the 
present and predicting future events, the techni-
cal difference is not always clear-cut. Although 
it is possible to study attachments in many cat-
egories, we will focus on just two. We can clas-
sify both present ("sick" vs. "healthy") and future 
("will get sick" vs. "will stay healthy") states. 
We can also estimate the likelihood of an event 
occurring now (sick vs. healthy) or in the future 
(becoming sick vs. remaining healthy). Studies 
use a "training set" of data to determine how to 
classify or predict future situations and then test 
this method on new data sets.

A perfect classifi er would flawlessly assign 
people to the sick or healthy groups. A useless 
classifi er would not distinguish between groups 
and would always guess randomly.

This review explores various tools scientists 
use to assess test quality, like Sensitivity, Speci-
fi city, Matthews Correlation Coeffi cient (MCC), 
Area Under the Receiver Operating Character-
istic – AUC (ROC) curve, Brier Score, and more. 
We will discuss their strengths, weaknesses, and 
limitations for classifying and predicting health 
outcomes. We will also show how to interpret 

these matrices and compute them using widely 
used software such as R and Python.

The Power of Metrics: 
Assessing Classifi cation 
Quality in Diverse Fields
Accurately evaluating diagnostic tests and pre-
dictive models enables a wide range of applica-
tions in healthcare. These tools play a crucial role 
in forecasting disease outbreaks [5,6], patient 
admissions, and treatment outcomes across var-
ious fi elds like epidemiology, general healthcare, 
and therapeutic interventions [7,8]. They also 
contribute signifi cantly to clinical trials by aid-
ing in participant selection, identifying patients 
at higher risk of complications, and assessing 
individual risk for chronic diseases [9,10]. Beyond 
trials, they assist in clinical practice by support-
ing disease diagnosis through patient data and 
biomarkers [11,12], personalising treatment plans 
and predicting their effectiveness [13,14], evalu-
ating genetic disease risk and susceptibility to 
adverse drug reactions [15,16], and guiding pre-
ventive interventions [17,18].

While numerous metrics exist to evaluate the 
predictive capabilities of variables, algorithms, 
and models, choosing the most appropriate set 
can be challenging. Mathematicians and statis-
ticians continually develop new metrics to bet-
ter characterise the nuances of various tasks and 
their outcomes [19-21]. This review introduces 
and explains the most commonly used metrics 
in the health sciences, with particular emphasis 
on those designed explicitly for recent machine 
learning techniques.

Metrics to assess the 
quality of classifi cation

A classifi er categorises objects based on their 
characteristics. For example, it can classi-
fy patients into specifi c classes, categories, or 
groups. Classifi ers can be simple, relying on 
a single variable for categorisation. Conversely, 
they can be complex, derived from models that 
consider multiple variables. 

Evaluating classifi ers and prediction models 
often involves multiple metrics. With dozens of 
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indicators available, selecting the appropriate one 
can be challenging. Ferri et al. categorise classifi -
cation metrics into three groups: Threshold, Rank, 
and Probability Metrics (see Figure 1) [22].

Threshold metrics evaluate classifi cation per-
formance at a fi xed threshold, such as the com-
monly used 6.5% cutoff for diagnosing diabe-
tes using glycated haemoglobin A1c (HbA1c). If 
a patient's HbA1c is above this, they are classifi ed 
as having diabetes. 

Rank metrics assess how well a classifi er 
ranks predictions. They consider the ordering of 
all scores, rather than a single cutoff, for example, 
in diagnosing diabetes using HbA1c, where sorted 
values of this variable can serve as consecutive 
cutoff points. Among the possible values, those 

above the cutoff point (6.5%) are generally con-
sidered indicative of diabetes [23]. Similarly, on 
the BIRADS (Breast Imaging Reporting and Data 
System) scale, sorted cut-off points range from 1 
(negative) to 5 (high cancer probability) [24]. Con-
versely, probability metrics are used in models 
that calculate the exact likelihood of a disease or 
event, focusing on the specifi c value rather than 
a single cut-off or order. 

In a nutshell, Threshold metrics are like on/off 
switches, ignoring prediction order. Rank metrics 
are like assigning grades (A, B, C), focusing on the 
order of predictions. Probability metrics are like 
percentages, considering both order and close-
ness to reality.

Figure 1. Illustration of the fundamental concepts underlying threshold, ranking, and probabilistic metrics in binary classifi cation. 
The diagram uses colour coding, with blue indicating patients (positive class) and red indicating healthy individuals (negative class), 
to represent the core components of classifi cation evaluation visually.
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Confusion matrix
A confusion matrix is a table used to defi ne the 
performance of a classifi cation algorithm. The 
matrix has two dimensions: predicted classifi -
cation and actual classifi cation. The predicted 
classifi cation is the classifi cation the investiga-
tor assigns to each patient (or other test sub-
ject), whereas the actual classifi cation is the cor-
rect classifi cation of each patient. The confusion 
matrix is shown in Figure 2, using the BIRADS 
scale for breast cancer detection as an example.

Such confusion matrices are used to compute 
threshold metrics. For Rank Metrics, multiple 
confusion matrices are created by varying cutoff 
points; in the example, separate tables are pro-
duced for BIRADS = 1, BIRADS = 2, BIRADS = 3, 
BIRADS = 4, and BIRADS = 5. Probability Metrics 
do not use such a matrix; instead, they are derived 
directly from a disease-specifi c probability value 
calculated for each patient and from the patient's 
distance to the actual value.

Metrics for assessing the quality of 
classifi cation
Table 1 summarises commonly used measures 
to assess the quality of a classifi er, divided into 
Threshold Metrics, i.e. based on a single con-
fusion matrix, Rank Metrics based on multiple 
confusion matrices determined for sequentially 
ordered cut-off points, and Probabilistic Metrics 
based on classifi ers that determine the probabil-
ity of an event occurring, i.e. a value between 0 
and 1.

Threshold Metrics
A simple classifi er is binary. For instance, wheth-
er a patient exhibits symptoms or has a disease. 
There are also more complex binary classifi ers, 
such as Naive Bayes, decision trees, and neu-
ral networks. Many of these models output con-
tinuous scores or class probabilities rather than 
direct class labels, and a confusion matrix can be 
obtained only after selecting a decision thresh-

Figure 2. Example of a confusion matrix. In the columns of this matrix, a positive value indicates a positive class (occurrence of an 
event, in this case, breast cancer), and a negative value indicates a negative class (no event). In the rows of the table, a positive value 
indicates the detection of an event by the classifi er (BIRADS scale >=4 indicates breast cancer), and a negative value indicates the 
non-detection of this event.

The four•  cells of the confusion matrix represent the following: True Positive (TP): 90 patients (who have cancer) and are classifi ed 
correctly as positive patients (cancer detected according to BIRADS).
False Positive•  (FP): 20 patients (healthy), but are classifi ed incorrectly as positive (cancer detected according to BIRADS).
True Negative•  (TN): 880 patients (healthy) are classifi ed correctly as negative (no cancer detected according to BIRADS).
False Negative•  (FN): 10 patients (who have cancer), but are classifi ed incorrectly as negative (no cancer detected according to 
BIRADS).
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Table 1. Main metrics to evaluate the quality of classifi cation and their defi nitions.

Term Defi nition and ranges of metrics along with interpretation
Measures based on the Threshold Metrics

Accuracy y The proportion of correct predictions among all predictions. Takes a value between 0 (no accuracy) and 1 
(complete accuracy).

Error The proportion of incorrect predictions among all predictions. Takes a value between 0 (no error) and 1 
(maximum error). Complementary metrics to Accuracy. 

Sensitivity (Recall 
or True Positive Rate) 

The proportion of true positive predictions (correctly identifi ed sick individuals) out of all actual sick 
individuals. Takes a value between 0 (no sensitivity) and 1 (maximum sensitivity).

Specifi city p y The proportion of true negative predictions (correctly identifi ed healthy individuals) out of all actual healthy 
individuals. Takes a value between 0 (no specifi city) and 1 (maximum specifi city) 

G-mean The geometric mean is sensitivity and specifi city combined into a single result that balances both 
concerns. A G-mean value of 1 indicates a perfect balance between sensitivity and specifi city, while a value 

close to 0 indicates an imbalance or poor performance of the classifi er

PPV (Precision) ( Precision, otherwise known as Positive Predictive Value (PPV) is the proportion of true positives among all 
positive predictions. Takes a value between 0 (lack of prediction skills for the positive class) and 1 (perfect 

prediction skills for the positive class)

NPV Negative Predictive Value (NPV) is the proportion of true negatives among all negative predictions. Takes 
a value between 0 (lack of prediction skills for the negative class) and 1 (perfect prediction skills for the 

negative class)

F1-score It focuses on the model's ability to identify positive instances. Precision and Recall combined into one 
result that tries to balance both concerns. It is calculated as the harmonic average of Precision and Recall. 

F-score values range from 0 to 1. The higher the F-score value, the better the classifi er performs in 
balancing precision and recall.

   

F(β) -score ( ) It focuses on the model's ability to identify positive instances. A weighted harmonic mean of Precision and 
Recall. In this formula, β determines the weight assigned to Recall compared to Precision. A higher value of 

beta gives more weight to Recall, while a lower value of β favors Precision. When beta is equal to 1, the 
F-beta score is equivalent to the F1-score, which balances Precision and Recall equally
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Term Defi nition and ranges of metrics along with interpretation

DOR Diagnostic Odds Ratio (DOR) is the ratio of two chances: the chance of a positive classifi er result from 
a diseased person to the chance of a positive classifi er result from a healthy person. A higher DOR indicates 

a better discriminatory power of the classifi er, with values greater than 1 suggesting higher odds of 
a positive classifi er result in individuals with the condition compared to those without.

MCC [26] Mathews Correlation Coeffi cient (MCC) metrics the correlation of the true classes with the predicted labels. 
MCC ranges in the interval [−1,+1], with –1 meaning perfect misclassifi cation and +1 perfect classifi cation. 

MCC generates a high score in its interval only if the classifi er scores a high value in all of the following: 
sensitivity, specifi city, precision, and negative predictive value.

Kappa (Cohen’s 
Kappa Coeffi cient) pp

This metric evaluates the agreement between predicted and actual classes. Also, it considers that some 
correspondence between predicted and actual classes could occur by chance and eliminates random 

correspondence. Cohen's Kappa value ranges from -1 to 1, where a value of 1 indicates full agreement and 
a value of 0 indicates complete randomness. Negative values denote agreement weaker than random is 

rarely achieved in practice.

  or  

Measures based on the Ranking Metrics (Methods)

ROC Curve The Receiver Operating Characteristic Curve (ROC) is a graphical representation of the performance of 
a binary classifi er system as its discrimination cut-off is varied. The higher the ROC curve rises above the 

diagonal (random line), the better the performance of the classifi er. A classifi er without skill formulates 
a line that winds along the diagonal.

The Y-axis presents sensitivity (true positive rate, TPR), X-axis presents 1- specifi city (false positive rate, 
FPR). Both values are obtained from the successive confusion matrices determined for each of the possible 

classifi er cut-off points.

AUC(ROC) ( ) The AUC(ROC) (Area Under the Curve (Receiver Operating Characteristic Curve) is interpreted as the 
probability that the model will return a higher probability of illness to an arbitrarily selected sick person 
than an arbitrarily selected healthy person. Where a value of 1 indicates ideal classifi cation (perfect skill 

classifi er), and a value of 0.5 indicates random classifi cation (no skill classifi er).

AUC(ROC) is calculated as the sum of the areas of the trapezoids where the area under the ROC curve is 
divided.

PR Curve Precision-Recall Curve (PR Curve) is a graphical representation of the performance of a binary classifi er 
system that focuses on TP cases at different decision cut-offs. The closer the Precision-Recall curve is to 

the point (1,1), the better the performance of the classifi er is. The no-skill line changes according to the 
balance of the classes. This is a horizontal line representing the proportion of positive cases in the data 
set. In the case of a balanced dataset, it is 0.5; if, for example, the sickness rate is 20%, the line is at 0.2.

Build a graph with Precision as the y-axis and Recall as the x-axis. Both values are obtained from the 
successive confusion matrices determined for each of the possible classifi er cut-off points.

AUC(PR) ( ) The area under the Precision-Recall curve (AUC(PR) is used as a measure of the overall performance of the 
classifi er, where a value of 1 indicates perfect classifi cation (perfect skill classifi er) and a value of 0 

indicates the worst possible result (no skill classifi er).

AUC(PR) is calculated as the sum of the areas of the trapezoids where the area under the Precision-Recall 
curve is divided.

Table 1. Continuued.
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old that converts these scores into binary predic-
tions. Once such a threshold is specifi ed, a con-
fusion matrix can be constructed and thresh-
old-based metrics derived from it.

Variables with multiple possible cut-off points 
are standard. During model development and 
comparative evaluation, relying on a single con-
fusion matrix at a single chosen threshold can be 
problematic because threshold-based measures 
are sensitive to the selected cutoff, and the “opti-
mal” threshold may differ across datasets, even 
for the same biomarker. In contrast, for a clini-
cally implemented biomarker or diagnostic test, 
establishing and validating a single, pre-spec-
ifi ed threshold that can be applied consistently 
across laboratories and settings is a strength 
rather than a limitation. Accuracy and Error may 
also be misleading in imbalanced datasets, which 
are frequent in medical studies where patient 
groups are much smaller than control groups 
(healthy individuals). Their practical application 
in current medical research often leads to the 
"Accuracy Paradox," particularly in imbalanced 
datasets. For instance, in rare disease screen-
ing where pathology prevalence is low (e.g., 1%), 
a naive classifi er predicting all patients as healthy 

achieves 99% accuracy but fails clinically due to 
0% sensitivity. This phenomenon is frequently 
observed in large-scale health record analyses, 
where neglecting metrics like Balanced Accura-
cy or G-mean can obscure a model's inability to 
detect the minority class of interest [25]. Positive 
predictive value (PPV) and negative predictive 
value (NPV) are often more clinically informa-
tive in these settings because they quantify the 
probability of disease given a test result; howev-
er, they are strongly dependent on disease preva-
lence, which limits their transportability between 
populations.

Threshold metrics, by contrast, offer great-
er versatility. These metrics can be determined 
regardless of the type of data on which the mark-
er was measured. It is possible to decide on both 
quantitative and qualitative data, structured and 
binary data. The simplicity of calculating and 
interpreting these metrics is also essential. For 
instance, utilising a confusion matrix facilitates 
straightforward computation of various per-
formance measures (as shown in Table 1) for 
BIRADS with the cut-off shown in Table 2.

As outlined in Figure 6, these metrics are the 
primary choice only when the core task is binary 

Table 1. Continuued.

Term Defi nition and ranges of metrics along with interpretation
Probabilistic Metrics

LogLoss
(cross-entropy) 

Logarithmic Loss (LogLoss), also known as the logarithmic loss function or cross-entropy loss, is 
a measure of the magnitude of error used in classifi cation problems. It measures the degree of deviation 

between the actual values (0 for the no-event class and 1 for the event class) and the probabilities 
predicted by the classifi er. LogLoss values are always non-negative, where a value of 0 indicates a perfect 
match between actual class values and predicted probabilities, a random model would have a log loss of 
around 0.693. The higher the LogLoss value, the greater the deviation between the predicted and actual 

values

For binary classifi cation is calculated as: 

) + (

where y is the actual value of the class (0 or 1), and  is the predicted probability of an event (disease)

Brier Score [Brier 
GW, Mean squared 

error) 

Brier's score measures the mean square error between actual values (0 for the no-event class and 1 for the 
event class) and the probabilities predicted by the classifi er. Brier's index takes values from 0 to 1. Lower 

values indicate better classifi cation. An ideal classifi cation would achieve a Brier index of 0, while 
a completely wrong, unreliable model would achieve a Brier index value of 1 and a random model would 

have a Brier score of around 0.25.
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classifi cation, and the chosen threshold is fi xed 
and clinically validated.

Threshold Optimisation: Selecting the Optimal 
Cut-off Point
The selection of an optimal cut-off point is cru-
cial for threshold-based classifi cation metrics 
such as Sensitivity, Specifi city, and Accuracy. 
The choice of threshold directly impacts the clas-
sifi er’s performance and its clinical utility. While 
a fi xed threshold may be appropriate in some 
cases, optimal threshold selection is often nec-
essary to balance false positives and false nega-
tives effectively. Several methods exist for deter-
mining the best threshold, including Youden’s 
Index, cost-benefi t analysis, and clinically rele-
vant decision-making frameworks.

Youden’s Index: Maximising Sensitivity and 
Specifi city
Youden’s Index is one of the most commonly 
used methods to select an optimal threshold. It 
is defi ned as:

J = Sensitivity + Speci icity - 1

The optimal threshold is the point at which 
Youden’s Index is maximised, meaning it provides 
the best trade-off between true positive rate and 
actual negative rate. This method is widely used 
in diagnostic tests where equal importance is 
placed on detecting disease (high Sensitivity) 
and avoiding misclassifi cation of healthy individ-
uals (high Specifi city).

Table 2. The calculation results obtained for the confusion matrix presented in Figure 1, together with their interpretation

Threshold Metric Calculations and Conclusions

Accuracy (880 + 90) / 1000 = 0.97

 97% of individuals were classifi ed correctly

Error (10 + 20) / 1000 = 0.03 

3% of individuals were classifi ed incorrectly

Sensitivity (Recall or 
True Positive Rate) 

 90 / (10 + 90) = 0.9 

90% of sick individuals were correctly classifi ed

Specifi city 880 / (20 + 880) = 0.98

98% of healthy individuals were correctly classifi ed

G-mean sqrt(0.9 * 0.98) = 0.94 

Mean sensitivity and specifi city is 94%

PPV (Precision) 90 / (20 + 90) = 0.82 

82% of individuals with a positive result (BIRADS>=4) were actually sick.

NPV 880 / (10 + 880) = 0.99 

99% of individuals with a negative result (BIRADS < 4) were actually healthy.

F1-score 2 * ((0.82 * 0.9) / (0.82 + 0.9)) = 0.86

 0.86 indicates a very good balance between precision and recall.

F2-score F2 score = (1 + 2^2) * ((0.82 * 0.9) / ((2^2 * 0.82) + 0.9)) = 0.88

With the assumption that recall is twice as important as precision, we still point out that BIRADS 
classifi es fairly accurately.

DOR (90/10)/(20/880) = 396

An individual with a positive test result is 396 times more likely to have the disease compared to 
someone with a negative test result.

MCC ((90*880)-(10*20))/sqrt((90+20)*(90+10)*(880+20)*(880+10)) = 0.842

0.842 indicates a strong positive correlation and a substantial agreement between BIRADS and reality.

Kappa (Cohen’s Kappa 
Coeffi cient)

2*(90*880-10*20)/((90+20)*(20+880)+(90+10)*(10+880)) = 0.84

Agreement for classifi cation between BIRADS and reality after taking into account the agreement.
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Cost-Benefi t Analysis: Accounting for Clinical 
Consequences
In many real-world applications, the costs associ-
ated with FP and FN classifi cations are not equal. 
A cost-benefi t analysis helps determine a thresh-
old that minimises the overall impact of classi-
fi cation errors. This approach assigns a weight 
or cost to each type of error based on its clinical 
consequences. The optimal threshold is the one 
that minimises the expected total cost, which is 
calculated as:

Total Cost = (CFP x FP Rate) + (CFN x FN Rate)

Where CFP and CFN represent the rela-
tive costs of false positives and false negatives, 
respectively, for example, in cancer screening, 
a false negative (missed diagnosis) may have 
a signifi cantly higher price (delayed treatment) 
than a false positive (leading to additional but 
unnecessary testing).

Clinically Relevant Decision-Making Frameworks
Beyond mathematical optimisation, clinical deci-
sion-making frameworks integrate real-world 
impact into threshold selection. For instance, in 
sepsis prediction models, a lower threshold may 
be preferred to increase early detection rates, 
even at the cost of a higher false-positive rate. 
Conversely, in cardiac risk stratifi cation, a stricter 
threshold may be needed to prevent unnecessary 
interventions.

One example is the Net Benefi t Approach, 
which considers both the relative utility of true 
positives and the harm of false positives in medi-
cal decision-making. This approach is frequently 
used in risk-based screening guidelines.

Ranking Metrics
Receiver operating characteristic (ROC) and pre-
cision-recall curves are standard methods for 
evaluating classifi er performance. They enable 
comparison of different diagnostic parameters 
(or classifi cation models), regardless of the deci-
sion threshold. We adjust the threshold by clas-
sifying test results as positive (sick) or negative 
(healthy) to derive these curves (see Figure 4). We 
then construct a confusion matrix to plot the ROC 
and PR curves for each threshold. 

The ROC curve is based on Sensitivity (True 
Positive Rate, TPR) and a value of 1 1-Specifi ci-

ty (False Positive Rate, FPR = 1-Specifi city). For 
different thresholds, points are plotted on the 
graph, creating an ROC curve that shows how the 
test balances between Sensitivity (Y-axis) and 
1-Specifi city (X-axis) as the classifi er's thresh-
olds are successively applied. The PR curve is 
based on Precision (PPV) and Recall (Sensitivity). 
We plot points for different thresholds, creating 
a PR curve that shows how the test balances Pre-
cision (Y-axis) and Recall (X-axis) as a function 
of the classifi er's successive tapping thresholds.

Although each of these metrics is based 
on successive cut-off points (thresholds) and 
successive confusion matrices, they take into 
account slightly different aspects of the assess-
ment of classifi cation quality and have distinct 
advantages and disadvantages (see Table 3)

The widespread use of ROC curves is support-
ed by the development of statistical tests to assess 
the signifi cance of the AUC and to compare ROC 
curves, such as the DeLong method and the Han-
ley-McNeil test [26]. Additionally, techniques such 
as Youden's method facilitate the determination of 
optimal cutoff points based on ROC curves [26]. It 
is critical to distinguish two properties: while AUC 
(ROC) is robust in the sense that its value is math-
ematically independent of changes in class prev-
alence (resampling), it can be highly misleading 
or overly optimistic in imbalanced settings. This 
"optimism" stems from the fact that AUC (ROC) 
treats all false alarms (FP) and missed diagnoses 
(FN) equally, regardless of the actual costs and the 
clinical dominance of the minority class.

Consider a dataset with a 99:1 ratio of negative 
to positive examples. A conservative, non-trivial 
classifi er might achieve very high Specifi city (low 
FPR) but low Sensitivity TPR), leading to a mis-
leadingly good AUC(ROC). This optimism arises 
because the ROC curve does not reflect the low 
overall prevalence of the positive class. To avoid 
this misleading optimism, a different metric, such 
as PR curves, is often preferred.

There are several ways to address this prob-
lem. One is to use a different metric, such as Pre-
cision-Recall curves. This metric is more sensi-
tive to class distribution and can give a more 
accurate picture of a model's performance when 
the minority class is the sick class. See the exam-
ples of L-selectin and P-selectin in the detection 
of psoriasis, and the example of heart rate in the 
detection of coronary disease (see Figure 5). 
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Figure 3. Advantages and disadvantages of individual Threshold Metrics.
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Figure 4. Outcomes of cut-off point (threshold) selection for a continuous biomarker as a potential classifi er. The fi eld sizes 
obtained at the indicated cutoff point yield four quantities: TP, TN, FP, and FN, which are entered into the confusion matrix.

Table 3. Advantages and Disadvantages of Ranking Metrics.

Ranking Metrics Advantages Disadvantages
ROC Visual Representation: ROC curves provide a visual 

representation of the performance of a classifi cation 
model across all possible thresholds.
Comprehensive Performance Summary: AUC 
(ROC) is a single metric that summarizes the overall 
performance of a diagnostic test. Represents the 
probability that a randomly chosen positive case will 
receive a higher test score than a randomly chosen 
negative case.
Threshold-Independent Comparison: Two or 
more ROC curves can be compared directly even if they 
are derived from different variables with different 
units.
Independence from Prevalence: The ROC 
coordinates (TPR, FPR) are mathematically 
independent of the class distribution (prevalence), 
making the AUC (ROC) value determinable even if the 
prevalence changes

Limited Clinical Interpretation: AUC (ROC), despite 
its popularity, may not directly translate into 
meaningful information for clinicians, patients, or 
healthcare providers. A test with an AUC of 0.9 might 
be considered "better" than one with an AUC of 0.8, but 
this difference may not have a signifi cant impact on 
patient outcomes or treatment decisions.
Focus on All Thresholds: AUC (ROC) considers the 
performance of a test across all possible thresholds, 
including those that may not be clinically relevant or 
useful in practice. This can lead to an overemphasis on 
thresholds that are not practical or important for 
decision-making.
Can be misleading in imbalanced settings: This 
is because AUC (ROC) gives equal weight to TPR and 
FPR, regardless of the actual prevalence. In highly 
imbalanced datasets, the resulting high AUC may mask 
poor performance on the minority class, as the FPR 
remains small due to the dominant TN count. This 
often leads to a misleadingly high AUC (ROC) when 
compared to AUC (PR)

PR Visual Representation: PR curves provide a visual 
representation of the performance of a classifi cation 
model at different Recall levels. This allows for a quick 
and intuitive understanding of the model's ability to 
identify positive cases (e.g., disease presence) while 
considering the trade-off between Precision and Recall
Focus on Positive Class: PR curves specifi cally 
focus on evaluating the performance of a model in 
identifying positive cases (e.g., disease presence), 
making them particularly useful in scenarios where the 
detection of these cases is of primary importance. 
They provide precise information about the model's 
ability to correctly classify positive instances, even 
when they are rare or diffi cult to identify.

Focus on Positive Class: PR curves primarily focus 
on evaluating the performance of a model in 
identifying positive cases (e.g., disease presence), 
disregarding the number of true negative results (e.g., 
disease absence). This can make them less suitable for 
tasks where both positive and negative classifi cations 
are equally important.
Neglect of Healthy Individuals: PR curves do not 
directly assess the model's ability to correctly classify 
healthy individuals (true negatives).
Sensitivity to Data Imbalance: This sensitivity 
makes it challenging to compare PR curves from 
different studies or datasets with varying class 
imbalances.
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Methodological note for illustrative 
examples

To ensure consistency, calculations for the pro-
vided examples (L-selectin, P-selectin, Heart 
Rate) were performed using individual probabili-
ties obtained from a univariate Logistic Regres-
sion model trained on the respective variable 
(Table 6, Figure 5). Ranking metrics (AUC-ROC 
and AUC-PR) and probability metrics (Brier 
Score, Log Loss) were calculated directly from 
these continuous outputs without applying any 
arbitrary classifi cation thresholds. The R code 
used to perform these calculations is available on 
GitHub (https://github.com/marpatra/Metrics.
Selectins-HR)

The ROC curve for L-selectin lies along the 
line of identity. At the 0.5 level with a balanced 
dataset (50:50 ratio), the prevalence line is at 
0.5 on the PR curve, indicating that L-selectin is 
a minimal-skill classifi er (see Figure 5). While the 
AUC(PR) of 0.523 is technically above the random 
expectation baseline of 0.50, the value is negligi-
bly close to the no-skill classifi er line, justifying 
its practical classifi cation as non-discriminatory. 
The ROC and PR curves for P-selectin indicate 
that low levels of this selectin have discrimina-
tory potential; at high levels, the curves lie along 
a line indicating no skill.

For the balanced cardiac dataset, we obtained 
ROC and PR curves, yielding high fi elds and their 
plots, and also demonstrating strong classifi -
cation performance for the heart rate variable. 
However, for the imbalanced data, the AUC(ROC) 
value of 0.776 is higher than that for the balanced 
data (0.745). This fi nding is due to the substantial 
increase in the TN, which pushes the FPR close to 
zero across many thresholds. This results in the 
ROC curve appearing overly optimistic. In sharp 
contrast, the AUC(PR) for the same imbalanced 
data drastically drops to 0.494 (from 0.704 in the 
balanced setting). This low AUC (PR) indicates 
the classifi er's weakness in the minority class 
(patients). Specifi cally, the optimistic AUC(ROC) 
masks a clinically unacceptable drop in PPV, 
where many optimistic predictions are actu-
ally FP relative to the few TP available. In clini-
cal practice, this would mean a high rate of false 
alarms, wasting resources and causing unneces-
sary patient anxiety, a critical factor missed by 
the ROC curve alone.

To mitigate imbalance during model training, 
techniques such as SMOTE (Synthetic Minor-
ity Over-sampling Technique) or undersampling 
can be employed to balance class distribution. 
Alternatively, cost-sensitive learning can be used 
to assign higher penalties to misclassifying the 
minority class.

Figure 6 directs the user to these ranking met-
rics when the primary goal is classifi cation, but 
when the data are imbalanced or a threshold-ag-
nostic comparison between models is required.

Real-World Applications: Robust Metrics and 
Resampling Genomic Studies (Metric Selection):
As highlighted in recent bioinformatics literature, 
standard metrics like F1-score can be misleading 
when the 'negative' class is biologically signifi -
cant. Chicco and Jurman [21] demonstrated that, 
in genomic binary classifi cation, the F1-score 
remained optimistically high even when the mod-
el failed to detect negative samples correctly. In 
contrast, the Matthews Correlation Coeffi cient 
(MCC) declined markedly in these scenarios, 
indicating the model's poor performance. Thus, 
for omics data, MCC is recommended over F1 as 
a more truthful performance indicator.

Pandemic Surveillance (Data Resampling):
In scenarios such as a COVID-19 diagnosis, data-
sets are often skewed toward negative cases. 
Research on radiomics applied to COVID-19 [2] 
has shown that models trained on imbalanced 
internal cohorts typically exhibit high Sensitiv-
ity but suffer a sharp decline in Specifi city when 
validated externally due to overfi tting. To miti-
gate this, techniques such as SMOTE (Synthetic 
Minority Over-sampling Technique) have been 
successfully employed to balance training sets, 
preventing the model from becoming biased 
toward the majority class (healthy individu-
als) and ensuring reliable detection of infected 
patients.

Robust Metrics and Resampling 

Probabilistic Metrics
As shown in Figure 6, these metrics become the 
priority when the core modelling objective is the 
prediction of a trustworthy probability value (P), 
essential for accurate clinical risk assessment
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Figure 5. ROC and PR curves for balanced data: no-skill classifi er using the example of L-selectin in psoriasis detection, partial-
ly-skill classifi er using the example of P-selectin in psoriasis detection, skilful classifi er using the example of heart rate in coronary 
disease detection for balanced data; partially skilful classifi er using the example of heart rate in coronary disease detection for imbal-
anced data. Calculations were performed using individual probabilities obtained from a logistic regression model trained on the input 
variable. The results obtained without using the logistic regression model are identical.
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When to Prefer Brier Score and Log Loss
Brier Score and Log Loss are essential metrics for 
evaluating probabilistic models, particularly when 
the focus is on the accuracy of predicted prob-
abilities rather than binary classifi cations. These 
metrics are preferred over threshold-based met-
rics (e.g., accuracy, F1-score, sensitivity, speci-
fi city, ROC curves, and PR curves) in the following 
scenarios:
1. Probabilistic Models: When using models 

such as logistic regression, neural networks, 
or Bayesian classifi ers, which output prob-
abilities rather than binary predictions. These 
metrics are particularly suited for assessing 
the quality of probability estimates, which are 
often more informative than binary decisions 
in medical applications.

2. Calibration Assessment: When evaluating 
how well the predicted probabilities align with 
actual outcomes. For example, a well-cali-
brated model predicting a 30% risk of an event 
should observe the event occurring approxi-
mately 30% of the time. Calibration is critical 
in clinical decision-making, where accurate 
probability estimates are necessary for risk 
stratifi cation and treatment planning.

3. Sensitivity to Small Errors: When the model's 
performance depends on accurately predict-
ing probabilities, especially for rare events or 
imbalanced datasets. Log Loss, in particular, 
penalises overconfi dence in incorrect predic-
tions, making it a valuable tool for training and 
fi ne-tuning probabilistic models.

Evaluation of Continuous Probabilities: The 
Two-Stage Process
The evaluation of a diagnostic test often involves 
a critical two-stage process that requires different 
metrics: Stage 1: probability prediction (calibration), 
and Stage 2: fi nal classifi cation (thresholding). 

Stage 1 metrics, such as the Brier Score and 
Log Loss, assess the quality of the model’s raw 
probability output (P) before any decision thresh-
old is applied. They quantify the model’s calibra-
tion, ensuring that if the model predicts a prob-
ability P, the outcome occurs approximately P per 
cent of the time. This is critical because, for clini-
cal decision-making, the expected probability P 
must be trustworthy. 

The importance of calibration: an illustrative 
example 
Metrics such as AUC (ROC) are primarily ranking 
metrics; they assess only the model’s ability to 
correctly order positive cases above negative cas-
es, regardless of the actual probability values. Two 
models can have identical AUC values but vast-
ly different calibration quality. Consider a small 
dataset of 10 cases (4 positive (1), 6 negative (0)). 
Two hypothetical models, Model M1 (well-cali-
brated) and Model M2 (poorly-calibrated), pro-
duce the following probabilities (see Table 4):

Despite providing different probability scores, 
the rank order of cases is identical for both mod-
els. Consequently, both Model M1 and Model M2 
achieve a perfect AUC(ROC) of 1.0. Based solely 
on the AUC, we would conclude that both models 

Table 4. Comparison of Ranking (AUC) and Probabilistic (Brier Score) Metrics for Two 
Models with Identical Ranking Ability but Different Calibration (Numerical Example). The R 
code used to perform these calculations is available on GitHub (https://github.com/mar-
patra/Metrics.Selectins-HR)

Case True label M1 (calibrated prob.) M2 (uncalibrated prob.)
1 1 0.60 0.90
2 1 0.55 0.85
3 1 0.40 0.70
4 1 0.30 0.60
5 0 0.25 0.55
6 0 0.15 0.40
7 0 0.10 0.30
8 0 0.05 0.20
9 0 0.02 0.10
10 0 0.01 0.05
Summary AUC-ROC 1.00 1.00

Brier Score 0.09 0.13
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are perfect classifi ers. However, when assess-
ing calibration using the Brier Score (BS), the dif-
ference becomes clear: BS(M1) = 0.089, BS(M2) 
= 0.131. Since a lower Brier Score indicates bet-
ter performance, Model M1 is signifi cantly bet-
ter calibrated than Model M2. Model M2 system-
atically underpredicts the risk for positive cases 
(e.g., predicting 0.60 instead of 0.90 for Case 1). 
Using Model M2 in a clinical setting would lead 
practitioners to be consistently overconfi dent that 
patients are not sick when a moderate probability 
is predicted, resulting in poorer clinical decisions 
despite the model's perfect AUC ranking. 

For a more comprehensive visualisation and 
assessment of calibration, it is standard prac-
tice to use Calibration Plots or Reliability Dia-
grams alongside Brier Score and Log Loss. These 
graphical tools compare predicted probabilities 
with observed frequencies across multiple bins, 
providing an intuitive way to identify system-
ic biases in the probability output (e.g., over- or 
underestimation). 

Stage 2 involves applying a decision threshold 
(cutoff point) to the calibrated probability output 
to produce the fi nal binary classifi cations (e.g., 
'sick' or 'healthy'). At this stage, threshold-depen-
dent metrics such as Sensitivity, Specifi city, PPV, 
NPV, F1-Score and Accuracy are used to assess 
the fi nal classifi cation performance based on the 
chosen trade-off.

Practical Applications in Medicine

Prognostic Models in Oncology:
In cancer survival prediction, binary classifi cation 
(alive/dead) is often insuffi cient; clinicians require 
the survival probability to weigh treatment risks. 
Steyerberg et al. [27] emphasise that a model can 
have high Accuracy but poor calibration (e.g., 
consistently predicting 60% risk for patients who 
actually have a 40% risk). In such cases, the Brier 
Score is the superior metric because it quanti-
fi es the distance between the predicted probabil-
ity and the actual outcome. A lower Brier score 
is associated with more reliable risk estimates, 
which are crucial for deciding whether to admin-
ister toxic chemotherapy.

Cardiovascular Risk Scoring:
Similarly, in predicting 10-year cardiovascu-
lar event risk (e.g., the Framingham Risk Score), 

Log Loss is widely used to penalise confi dent but 
incorrect predictions. If a model predicts a 99% 
chance of 'no heart attack' for a patient who sub-
sequently suffers one, Log Loss applies a heavy 
penalty, forcing the algorithm to be more cau-
tious and realistic in its probability estimates 
during training."

By incorporating Brier Score and Log Loss 
into the evaluation process, researchers and cli-
nicians can ensure that their models provide 
not only accurate classifi cations but also reli-
able probability estimates, ultimately improving 
patient outcomes.

Implementations in Practice
Implementations of these measures are less 
widely available than other performance met-
rics, such as Accuracy or Precision. This can 
make it challenging to use these metrics in some 
programming environments. It is important to 
emphasise that Brier Score and Log Loss have 
strengths and weaknesses, and the choice of 
appropriate metrics depends on the specifi cs of 
the task (see Table 5). 

Depending on the software used, the values 
obtained for these measures may vary minimal-
ly. In our examples (L-selectin and P-selectin for 
psoriasis detection, and heart rate for coronary 
disease detection), we fi rst fi tted simple logistic 
regression models with the respective variable 
as the predictor, yielding an individual predicted 
probability of the outcome for each patient. Brier 
Score was then calculated as the mean squared 
difference between these case-wise predicted 
probabilities and the observed outcomes, and 
Log Loss was computed using the exact indi-
vidual probabilities. The results for calculations 
performed in R and in Python are presented in 
Table 6.

Validation

The data used to build and assess a classifi er's 
quality is called learning or training data. In the 
following steps, each classifi er, whether sim-
ple (based on a single variable) or complex, like 
a logistic regression model, neural network, or 
decision tree, should be validated with indepen-
dent data, called test or validation data. Repeat-
ed testing of the same classifi ers or models on 
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Table 6. Brier Score and Log Loss for balanced data for: no-skill classifi er using the example of L-selectin in psoriasis detection, 
partially-skilled classifi er using the example of P-selectin in psoriasis detection, skilful classifi er using the example of heart rate in 
coronary disease detection; and for imbalanced data for a partially skilful classifi er using the example of heart rate in coronary dis-
ease detection. Calculations were performed using individual probabilities obtained from a logistic regression model trained on the 
input variable and a null model (without variables). Results were presented using the LogLoss function from the MLmetrics package 
in R, and based on the LogisticRegression, log_loss, and NumPy functions from the scikit-learn and NumPy packages in Python. The 
data used for these calculations, along with the functions necessary to perform them, are available at https://github.com/marpatra/
Metrics.Selectins-HR 

Classifi er Brier Score Log Loss

Python R Python R

L-selectin in psoriasis 
detection no-skill 0.23050299261287152 0.230503 0.692726390827548 0.6927264

P-selectin in psoriasis 
detection

partially 
skillful 0.23457753518070662 0.2345775 0.656469675228019 0.6564697

heart rate in coronary 
disease detection skillful 0.22963327943711911 0.2296331 0.6517807033032978 0.65178

heart rate in coronary 
disease detection

partially 
skillful 0.22963327943711911 0.2296331 0.65178 0.65178

*The R and Python implementations produce similar outputs with slight differences due to numerical precision, optimisation algo-
rithms, library settings, and convergence criteria.

Table 5. Advantages and disadvantages of the chosen Probability Metrics.

Probability Metrics Advantages Disadvantages

Brier score Interpretability: Brier Score is easier to interpret 
than Log Loss. It repre sents the mean squared 
difference between the predicted probabilities 
and the actual outcomes (0 or 1). A lower Brier 
Score indicates better model performance, 
making it intuitive to understand how well the 
model performs on average.

Robustness to calibration issues: Even if 
a model's predicted probabilities are not perfectly 
aligned with the actual outcomes, Brier Score can 
still provide a reasonable assessment of 
performance.

No penalty for overconfi dence: does not penalize 
models for being too confi dent but incorrect in their 
predictions. This can lead to preferring models that 
predict outstanding high/low values, even if they are 
wrong.

In the case of extremely imbalanced data, where one 
class accounts for less than 1% of observations, may 
not reflect the true effectiveness of the model.

Log Loss Suitable for training models: Minimizing Log 
Loss during training encourages the model to 
learn accurate probability estimates.

More sensitive to probability differences: 
Log Loss is more sensitive to differences in 
predicted probabilities compared to Brier Score. 
This allows it to better distinguish between 
models that make subtle but signifi cant 
improvements in probability estimation.

Discourages overconfi dence: Log Loss 
heavily penalizes models that are overly confi dent 
in their wrong predictions. This can be benefi cial 
for tasks where assigning the correct probabilities 
is crucial.

Limited interpretability: Log loss is diffi cult to 
interpret in real-world terms. The metric is based on 
logarithmic values, which makes it diffi cult to interpret 
intuitively.

Assumes well-calibrated probabilities: Log loss 
works best when a model predicts probabilities with high 
Accuracy. If a model is inaccurate or poorly calibrated, 
log loss may not be a reliable measure of performance. 
This can lead to preferring models that underpredict 
positive class probabilities, even if they better identify 
actual outcomes.

In the case of extremely imbalanced data, where one 
class accounts for less than 1% of observations, may 
not reflect the true effectiveness of the model.
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a new dataset will indicate how well the original 
predictive model and its classifi ers perform on 
new, unseen data. All listed metrics can be cal-
culated on both the training set, to assess the 
current quality of classifi cation and prediction, 
and on new validation and test datasets, to gen-
eralise this quality to future data on which it may 
be used.

Model Validation and Overfi tting
Model validation is a critical step in ensuring 
the reliability and generalizability of classifi ca-
tion models. Overfi tting occurs when a model 
performs exceptionally well on the training data 
but fails to generalise to new, unseen data. This 
typically happens when the model learns noise or 
specifi c patterns in the training data that do not 
apply to the broader population.

Techniques to Prevent Overfi tting
k-Fold Cross-Validation: In k-fold cross-valida-
tion, the dataset is divided into k subsets (folds). 
The model is trained on k-1 folds and validated 
on the remaining fold. This process is repeated 
k times, with each fold used exactly once as the 
validation set. The results are averaged to provide 
an estimate of model performance. For instance, 
k-fold cross-validation is essential for obtaining 
a stable estimate of AUC(ROC) for the Heart Rate 
classifi cation model, ensuring that the report-
ed performance is not specifi c to a single data 
split. Leave-One-Out Cross-Validation (LOOCV): 
LOOCV is a special case of k-fold cross-valida-
tion in which k equals the number of samples in 
the dataset. Each sample is used once as a vali-
dation set, while the remaining samples form 
the training set. This method is benefi cial for 
small datasets, as it maximises the use of avail-
able data. This technique could be employed to 
rigorously estimate the Sensitivity and Specifi c-
ity of the BI-RADS scale classifi er (e.g., at the >4 
threshold) when validating its performance in 
small, limited patient cohorts.

Bootstrap Methods: Bootstrap resampling is 
a resampling technique used to assess the vari-
ability and internal stability of model performance 
within the same underlying population (e.g., the 
same dataset). By repeatedly drawing samples 
with replacement from the original data and refi t-
ting or re-evaluating the model, bootstrap meth-
ods provide estimates of the uncertainty and opti-

mism of performance measures (e.g. AUC, Brier 
Score). However, bootstrap resampling cannot 
replace evaluation in genuinely different patient 
populations. Assessment of model performance 
across settings or populations requires exter-
nal validation on separate datasets, rather than 
resampling from a single cohort. Bootstrapping is 
highly useful for assessing the stability and con-
fi dence intervals of the AUC(PR) and Brier Score 
values reported for the selectin and heart rate 
models, providing a measure of how much these 
metrics might vary across different potential 
patient samples, and thus detecting overfi tting.

Implications for classifi cation Metrics: 
practical examples
Validation techniques are not merely procedur-
al steps; they often reveal critical flaws in met-
ric interpretation that theoretical calculations on 
training data miss.

Consider a study that employs high-dimen-
sional genomic data to predict cancer subtypes 
(e.g., the MAQC-II study [28]). A classifi er might 
achieve an Accuracy of 98% and an AUC of 0.99 
on the training set due to the model memoris-
ing noise (overfi tting). However, when subjected 
to 10-fold cross-validation, the AUC might drop 
drastically to 0.60. This discrepancy serves as 
a red flag that the initial high metrics were illu-
sory.

Similarly, in radiomics studies for COVID-19 
detection [2], models often show high Sensitiv-
ity on training cohorts. However, external vali-
dation on data from a different hospital typically 
indicates a signifi cant drop in Specifi city, result-
ing in a high number of False Positives. This hap-
pens because the model may learn scanner-spe-
cifi c artefacts rather than disease pathology. In 
such cases, relying solely on training F1-scores 
would be misleading; cross-validation highlights 
the need for metrics such as the Matthews Cor-
relation Coeffi cient (MCC), which is more robust 
to such shifts in confusion-matrix distributions 
than the F1-score or Accuracy.

Practical Considerations in Medical 
Applications
In medical applications, where the stakes are 
high, ensuring that a model generalises well to 
new data is crucial. Overfi tting can lead to over-
ly optimistic performance estimates, poten-
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tially resulting in the deployment of unreliable 
diagnostic tools. Proper validation techniques 
help mitigate this risk, ensuring that the mod-
el's performance is consistent across different 
datasets and populations. For example, a model 
trained to predict sepsis must be validated on 
diverse patient cohorts to ensure its reliability in 
real-world clinical settings.

Discussion

Summary of Metric Strengths and 
Weaknesses within the Clinical Context
No single metric is universally optimal. Their 
selection must reflect the clinical context, priori-
ties, and data characteristics.

Holistic Metrics: Accuracy (ACC) and Error 
Rate are useful when data are balanced, and mis-
classifi cation costs are symmetric. Cohen's Kap-
pa corrects these scores for chance agreement 
[27]. Matthews Correlation Coeffi cient (MCC) 
combines holistic assessment with robustness to 
class imbalance, making it a recommended met-
ric in projects regulated by the U.S. FDA [29,30]. 
The Diagnostic Odds Ratio (DOR) summarises the 
overall discriminatory effectiveness of a test. The 

ROC curve and the area under it (AUC) are used 
to assess a test's ability to distinguish between 
groups across various thresholds [31-33]. The PR 
(Precision-Recall) curve is more informative than 
the ROC curve for detecting rare events [34]. The 
selection of an optimal cutoff point can be per-
formed using Youden's index or, better adapted 
to clinical realities, the tangent (cost) method, 
which explicitly incorporates the relative costs of 
FP and FN and prevalence.

Class-Oriented Metrics: As indicated above, 
Sensitivity, Specifi city, PPV, and NPV are funda-
mental, and their relevance depends on the clini-
cal objective. The F1 score (and its variants) is 
instrumental in settings with class imbalance, as it 
combines precision (PPV) and sensitivity (recall).

Calibration Assessment Metrics: Brier Score 
and Log Loss assess the accuracy of estimat-
ed probabilities. The Brier Score is easier to 
interpret, whereas log loss is more sensitive to 
minor errors and is commonly used in machine 
learning.

Guidelines for Metric Selection and Their 
Clinical Rationale
The prevalence of a disease has a fundamental 
impact on the interpretation of diagnostic test 

Figure 6. Graph facilitating the selection of a metric depending on the purpose for which it is determined (assignment to classes, pre-
diction of probability of assignment to classes), type of data, validity or balancing of classes of events (sick) and no events (healthy). 
While this graph helps establish the primary objective, in practice, it is common to use a combination of indicators to evaluate the 
model's performance fully.
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results and the choice of evaluation metrics. 
A structured selection framework, presented as 
a decision tree (see Figure 6), comprises three 
steps: the problem type (classifi cation vs. predic-
tion), the type of target variable, and the relative 
importance of classes for a given task.

The decision in the fi nal step in medicine is 
critically determined by the asymmetry of mis-
classifi cation costs, which varies with the stage 
of the diagnostic process. This is vividly illus-
trated in Figure 7, which presents the trade-off 
in cancer screening. At the screening stage, the 
primary goal is to rule out the disease, making 
a False Negative (FN) – missing a sick patient – 
the most critical error, as it delays potentially 
life-saving treatment. Consequently, screening 
tests are optimised for high Sensitivity and Nega-
tive Predictive Value (NPV). It is crucial to note, 
however, that a positive screening result typically 
triggers further confi rmatory steps rather than 
immediate aggressive therapy. At this subsequent 
confi rmatory diagnostic stage, the cost of a False 
Positive (FP) – subjecting a healthy person to 
invasive procedures and psychological distress – 
becomes predominant. Therefore, confi rmatory 
tests must exhibit high Specifi city and Positive 
Predictive Value (PPV) to ensure that treatment 
is administered only to those who genuinely need 

it. In practice, minimising one type of error often 
increases the other, and a common compromise 
is to use balanced metrics such as the G-mean or 
metrics from the F-score family.

A Critical Overview and Future Directions
A conscious selection of metrics – often involv-
ing a combination of several – is essential for 
reliable evaluation. The metrics discussed thus 
far represent established, mathematically rigor-
ous approaches to model assessment. However, 
the fi eld continues to evolve, driven by the need 
for more intuitive, actionable, and human-centric 
evaluation tools.

Classical metrics, together with consider-
ations of disease prevalence and the asymmet-
ric clinical costs of errors at different stages of 
the patient pathway, enable the selection of mea-
sures that ensure a clinically sound and accurate 
evaluation of diagnostic and predictive models. 
The future of model evaluation in medicine, how-
ever, lies in the synergy between these traditional 
foundations and the development of new tech-
niques necessary for deploying AI systems (e.g., 
Shapley Additive exPlanations [35], U-smile [36]. 
New methods are constantly being introduced, 
and it was not possible to discuss and present 
them in a single summary.

Figure 7. The harms caused by false negative and false positive prediction errors in the BI-RADS 
scale. A False Negative (FN) is typically weighted more heavily than a False Positive (FP), as the pri-
mary goal is to identify all potential cases to avoid the risk of disease progression.
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It is important to note that this tutorial focuses 
on binary classifi cation. In contrast, multi-class 
problems—along with their corresponding met-
rics, interpretability estimation methods, and 
associated evaluation challenges—constitute an 
essential and natural direction for future work in 
this rapidly evolving fi eld.
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