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ABSTRACT

Evaluating a classifier's performance is critical for its successful application. This paper explores various
metrics used for binary classification tasks, highlighting their strengths and limitations.

Simple threshold metrics, such as Accuracy and Sensitivity, are efficient for binary data and a single cutoff
point. However, their reliance on a single threshold and sensitivity to imbalanced data can be drawbacks.
For more robust evaluation, ranking metrics such as Receiver Operating Characteristic (ROC) and Preci-
sion-Recall (PR) curves provide a threshold-agnostic approach, enabling comparison across different cutoff
points. Additionally, probabilistic metrics like Brier Score and Log Loss assess the model's ability to predict
class probabilities.

The choice of metric depends on the specific classification problem and the characteristics of the data.
When dealing with imbalanced data or complex decision-making processes, using multiple metrics is rec-
ommended to gain a comprehensive understanding of the model's performance.

This paper emphasises the importance of understanding metric limitations and of selecting appropriate
metrics for a specific classification task. By doing so, researchers and practitioners can ensure a more accu-
rate and informative evaluation of their models, ultimately leading to the development of reliable tools for
various applications.

Introduction is crucial across various sectors. Diagnostic
tests play a vital role in medicine, public health,
and research by enabling objective evaluation

of patients and the diagnosis of conditions [1].

In today's data-driven world, accurately distin-
guishing between healthy and sick individuals
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With challenges like the COVID-19 pandem-
ic, there's a growing awareness of the need
for accurate diagnostic tests and continual
improvement [2,3].

There is a vast array of diagnostic tests (clas-
sifiers), each with its own set of quality metrics.
Choosing the appropriate metric depends on sev-
eral factors.

First, the disease prevalence must be consid-
ered. Is the disease common or rare in the popu-
lation being tested? Screening tests for diseases
with low prevalence, like mammograms for breast
cancer, use different metrics than tests for sus-
pected cases. Secondly, the type of variable mea-
sured by the test is crucial. Can the test result be
a number (e.g., body temperature), an ordered
category (e.g., mild pain), or something else (e.q.,
gender or smoking status) [4]? Thirdly, the pur-
pose of the test must be determined. Are we sim-
ply classifying someone as healthy or sick, or are
we trying to predict future health outcomes, like
dead or alive?

Classification vs. Prediction: Two Sides of
the Same Coin

Classification and prediction are closely linked.
While we often think of classifying things in the
present and predicting future events, the techni-
cal difference is not always clear-cut. Although
it is possible to study attachments in many cat-
egories, we will focus on just two. We can clas-
sify both present ("sick” vs. "healthy") and future
("will get sick” vs. "will stay healthy") states.
We can also estimate the likelihood of an event
occurring now (sick vs. healthy) or in the future
(becoming sick vs. remaining healthy). Studies
use a "training set” of data to determine how to
classify or predict future situations and then test
this method on new data sets.

A perfect classifier would flawlessly assign
people to the sick or healthy groups. A useless
classifier would not distinguish between groups
and would always guess randomly.

This review explores various tools scientists
use to assess test quality, like Sensitivity, Speci-
ficity, Matthews Correlation Coefficient (MCC),
Area Under the Receiver Operating Character-
istic — AUC (ROC) curve, Brier Score, and more.
We will discuss their strengths, weaknesses, and
limitations for classifying and predicting health
outcomes. We will also show how to interpret
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these matrices and compute them using widely
used software such as R and Python.

The Power of Metrics:
Assessing Classification
Quality in Diverse Fields

Accurately evaluating diagnostic tests and pre-
dictive models enables a wide range of applica-
tions in healthcare. These tools play a crucial role
in forecasting disease outbreaks [5,6], patient
admissions, and treatment outcomes across var-
ious fields like epidemiology, general healthcare,
and therapeutic interventions [7,8]. They also
contribute significantly to clinical trials by aid-
ing in participant selection, identifying patients
at higher risk of complications, and assessing
individual risk for chronic diseases [9,10]. Beyond
trials, they assist in clinical practice by support-
ing disease diagnosis through patient data and
biomarkers [11,12], personalising treatment plans
and predicting their effectiveness [13,14], evalu-
ating genetic disease risk and susceptibility to
adverse drug reactions [15,16], and guiding pre-
ventive interventions [17,18].

While numerous metrics exist to evaluate the
predictive capabilities of variables, algorithms,
and models, choosing the most appropriate set
can be challenging. Mathematicians and statis-
ticians continually develop new metrics to bet-
ter characterise the nuances of various tasks and
their outcomes [19-21]. This review introduces
and explains the most commonly used metrics
in the health sciences, with particular emphasis
on those designed explicitly for recent machine
learning techniques.

Metrics to assess the
quality of classification

A classifier categorises objects based on their
characteristics. For example, it can classi-
fy patients into specific classes, categories, or
groups. Classifiers can be simple, relying on
a single variable for categorisation. Conversely,
they can be complex, derived from models that
consider multiple variables.

Evaluating classifiers and prediction models
often involves multiple metrics. With dozens of



indicators available, selecting the appropriate one
can be challenging. Ferri et al. categorise classifi-
cation metrics into three groups: Threshold, Rank,
and Probability Metrics (see Figure 1) [22].

Threshold metrics evaluate classification per-
formance at a fixed threshold, such as the com-
monly used 6.5% cutoff for diagnosing diabe-
tes using glycated haemoglobin Alc (HbAlc). If
a patient's HbAlc is above this, they are classified
as having diabetes.

Rank metrics assess how well a classifier
ranks predictions. They consider the ordering of
all scores, rather than a single cutoff, for example,
in diagnosing diabetes using HbAlc, where sorted
values of this variable can serve as consecutive
cutoff points. Among the possible values, those

above the cutoff point (6.5%) are generally con-
sidered indicative of diabetes [23]. Similarly, on
the BIRADS (Breast Imaging Reporting and Data
System) scale, sorted cut-off points range from 1
(negative) to 5 (high cancer probability) [24]. Con-
versely, probability metrics are used in models
that calculate the exact likelihood of a disease or
event, focusing on the specific value rather than
a single cut-off or order.

In a nutshell, Threshold metrics are like on/off
switches, ignoring prediction order. Rank metrics
are like assigning grades (A, B, C), focusing on the
order of predictions. Probability metrics are like
percentages, considering both order and close-
ness to reality.
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Figure 1. lllustration of the fundamental concepts underlying threshold, ranking, and probabilistic metrics in binary classification.
The diagram uses colour coding, with blue indicating patients (positive class) and red indicating healthy individuals (negative class),
to represent the core components of classification evaluation visually.
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Confusion matrix
A confusion matrix is a table used to define the
performance of a classification algorithm. The
matrix has two dimensions: predicted classifi-
cation and actual classification. The predicted
classification is the classification the investiga-
tor assigns to each patient (or other test sub-
ject), whereas the actual classification is the cor-
rect classification of each patient. The confusion
matrix is shown in Figure 2, using the BIRADS
scale for breast cancer detection as an example.
Such confusion matrices are used to compute
threshold metrics. For Rank Metrics, multiple
confusion matrices are created by varying cutoff
points; in the example, separate tables are pro-
duced for BIRADS = 1, BIRADS = 2, BIRADS = 3,
BIRADS = 4, and BIRADS = 5. Probability Metrics
do not use such a matrix; instead, they are derived
directly from a disease-specific probability value
calculated for each patient and from the patient's
distance to the actual value.
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Metrics for assessing the quality of
classification

Table 1 summarises commonly used measures
to assess the quality of a classifier, divided into
Threshold Metrics, i.e. based on a single con-
fusion matrix, Rank Metrics based on multiple
confusion matrices determined for sequentially
ordered cut-off points, and Probabilistic Metrics
based on classifiers that determine the probabil-
ity of an event occurring, i.e. a value between 0
and 1.

Threshold Metrics

A simple classifier is binary. For instance, wheth-
er a patient exhibits symptoms or has a disease.
There are also more complex binary classifiers,
such as Naive Bayes, decision trees, and neu-
ral networks. Many of these models output con-
tinuous scores or class probabilities rather than
direct class labels, and a confusion matrix can be
obtained only after selecting a decision thresh-

BREAST CANCER

Figure 2. Example of a confusion matrix. In the columns of this matrix, a positive value indicates a positive class (occurrence of an
event, in this case, breast cancer), and a negative value indicates a negative class (no event). In the rows of the table, a positive value
indicates the detection of an event by the classifier (BIRADS scale >=4 indicates breast cancer), and a negative value indicates the

non-detection of this event.

+ The four cells of the confusion matrix represent the following: True Positive (TP): 90 patients (who have cancer) and are classified
correctly as positive patients (cancer detected according to BIRADS).

+ False Positive (FP): 20 patients (healthy), but are classified incorrectly as positive (cancer detected according to BIRADS).

+ True Negative (TN): 880 patients (healthy) are classified correctly as negative (no cancer detected according to BIRADS).

+ False Negative (FN): 10 patients (who have cancer), but are classified incorrectly as negative (no cancer detected according to

BIRADS).
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Table 1. Main metrics to evaluate the quality of classification and their definitions.

Term

Definition and ranges of metrics along with interpretation

Measures based on the Threshold Metrics

00
FNI )

The proportion of correct predictions among all predictions. Takes a value between 0 (no accuracy) and 1

(complete accuracy).

TP + TN
TP + TN + FP +FN

Error

The proportion of incorrect predictions among all predictions. Takes a value between 0 (no error) and 1
(maximum error). Complementary metrics to Accuracy.

FP + FN
TP + TN + FP +FN

Sensitivity (Recall

or True Positive Rate)

The proportion of true positive predictions (correctly identified sick individuals) out of all actual sick
individuals. Takes a value between 0 (no sensitivity) and T (maximum sensitivity).

TP
TP + FN

Specificity

o
D

The proportion of true negative predictions (correctly identified healthy individuals) out of all actual healthy
individuals. Takes a value between 0 (no specificity) and 1 (maximum specificity)

TN
TN + FP

0
20

The geometric mean is sensitivity and specificity combined into a single result that balances both
concerns. A G-mean value of 1 indicates a perfect balance between sensitivity and specificity, while a value
close to 0 indicates an imbalance or poor performance of the classifier

— t II TP TN
[sensitivity x specificity = X
ysensitivity X specificity \TP + FN TN + FP

PPV (Precision)

0D

Precision, otherwise known as Positive Predictive Value (PPV) is the proportion of true positives among all
positive predictions. Takes a value between 0 (lack of prediction skills for the positive class) and 1 (perfect
prediction skills for the positive class)

TP
TP + FFP

Negative Predictive Value (NPV) is the proportion of true negatives among all negative predictions. Takes
a value between 0 (lack of prediction skills for the negative class) and 1 (perfect prediction skills for the
negative class)

TN
TN + EN

F1-score

0o

It focuses on the model's ability to identify positive instances. Precision and Recall combined into one
result that tries to balance both concerns. It is calculated as the harmonic average of Precision and Recall.
F-score values range from 0 to 1. The higher the F-score value, the better the classifier performs in
balancing precision and recall.

o ., Drecision sxrecall IuTP

precision + recall I%TF + FP+FN ]

F(B) -score

0o

It focuses on the model's ability to identify positive instances. A weighted harmonic mean of Precision and
Recall. In this formula, B determines the weight assigned to Recall compared to Precision. A higher value of
beta gives more weight to Recall, while a lower value of B favors Precision. When beta is equal to 1, the
F-beta score is equivalent to the F1-score, which balances Precision and Recall equally

X 2 TP TP
(I+8°) = (precision x remii}: (I+B°) % {TP FFF *TP ¢ FN}
¥ % precision + recall B2 x TP T TF
TP + FP TP + FN
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Table 1. Continuued.

Term

Definition and ranges of metrics along with interpretation

DORt
o0

Diagnostic Odds Ratio (DOR) is the ratio of two chances: the chance of a positive classifier result from
a diseased person to the chance of a positive classifier result from a healthy person. A higher DOR indicates
a better discriminatory power of the classifier, with values greater than 1 suggesting higher odds of
a positive classifier result in individuals with the condition compared to those without.

TF<=FN
FP =TN

MCC [26]
(re Lee)

Mathews Correlation Coefficient (MCC) metrics the correlation of the true classes with the predicted labels.
MCC ranges in the interval [-1,+1], with =1 meaning perfect misclassification and +1 perfect classification.
MCC generates a high score in its interval only if the classifier scores a high value in all of the following:
sensitivity, specificity, precision, and negative predictive value.

(TP x TN) — (FP x FN)
JTP +FP)x (TP + FN) x (TN + FP) x (TN + FN)

Kappa (Cohen's
Kappa Coefficient)

(re I P

This metric evaluates the agreement between predicted and actual classes. Also, it considers that some
correspondence between predicted and actual classes could occur by chance and eliminates random
correspondence. Cohen's Kappa value ranges from -1 to 1, where a value of 1 indicates full agreement and
avalue of 0 indicates complete randomness. Negative values denote agreement weaker than random is
rarely achieved in practice.

TP<TN—-FNXFP

chzerved agreement — expected agresment «
(TP+FPy4(FP+TN}+(TP+FN}<FN+TN

l—expacted agresment

Measures based on the Ranking Metrics (Methods)

ROC Curve
e
(e L e

The Receiver Operating Characteristic Curve (ROC) is a graphical representation of the performance of
a binary classifier system as its discrimination cut-off is varied. The higher the ROC curve rises above the
diagonal (random line), the better the performance of the classifier. A classifier without skill formulates
a line that winds along the diagonal.

The Y-axis presents sensitivity (true positive rate, TPR), X-axis presents 1- specificity (false positive rate,
FPR). Both values are obtained from the successive confusion matrices determined for each of the possible
classifier cut-off points.

AUC(ROC)
o0
DO

The AUC(ROC) (Area Under the Curve (Receiver Operating Characteristic Curve) is interpreted as the
probability that the model will return a higher probability of illness to an arbitrarily selected sick person
than an arbitrarily selected healthy person. Where a value of 1 indicates ideal classification (perfect skill
classifier), and a value of 0.5 indicates random classification (no skill classifier).

AUC(ROC) is calculated as the sum of the areas of the trapezoids where the area under the ROC curve is
divided.

PR Curve

00

Precision-Recall Curve (PR Curve) is a graphical representation of the performance of a binary classifier
system that focuses on TP cases at different decision cut-offs. The closer the Precision-Recall curve is to
the point (1,1), the better the performance of the classifier is. The no-skill line changes according to the
balance of the classes. This is a horizontal line representing the proportion of positive cases in the data
set. In the case of a balanced dataset, it is 0.5; if, for example, the sickness rate is 20%, the line is at 0.2.

Build a graph with Precision as the y-axis and Recall as the x-axis. Both values are obtained from the
successive confusion matrices determined for each of the possible classifier cut-off points.

AUC(PR)

00

The area under the Precision-Recall curve (AUC(PR) is used as a measure of the overall performance of the
classifier, where a value of 1 indicates perfect classification (perfect skill classifier) and a value of 0
indicates the worst possible result (no skill classifier).

AUC(PR) is calculated as the sum of the areas of the trapezoids where the area under the Precision-Recall
curve is divided.
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Table 1. Continuued.

Term Definition and ranges of metrics along with interpretation

Probabilistic Metrics

LogLoss
(cross-entropy)

Logarithmic Loss (LogLoss), also known as the logarithmic loss function or cross-entropy loss, is
a measure of the magnitude of error used in classification problems. It measures the degree of deviation
between the actual values (0 for the no-event class and 1 for the event class) and the probabilities
predicted by the classifier. LogLoss values are always non-negative, where a value of 0 indicates a perfect
match between actual class values and predicted probabilities, a random model would have a log loss of

around 0.693. The higher the LogLoss value, the greater the deviation between the predicted and actual

values

For binary classification is calculated as:

Log Los ==;><E

[y x lag(y)+(/ —y) x ({ = y) % log(I —y)]

where y is the actual value of the class (0 or 1), and ¥ is the predicted probability of an event (disease)

Brier Score [Brier
GW, Mean squared

Brier's score measures the mean square error between actual values (0 for the no-event class and 1 for the
event class) and the probabilities predicted by the classifier. Brier's index takes values from 0 to 1. Lower

error) values indicate better classification. An ideal classification would achieve a Brier index of 0, while
a completely wrong, unreliable model would achieve a Brier index value of 1 and a random model would
have a Brier score of around 0.25.

n

I .
Brier Score = m X Z (% = w)

i

i=1

old that converts these scores into binary predic-
tions. Once such a threshold is specified, a con-
fusion matrix can be constructed and thresh-
old-based metrics derived from it.

Variables with multiple possible cut-off points
are standard. During model development and
comparative evaluation, relying on a single con-
fusion matrix at a single chosen threshold can be
problematic because threshold-based measures
are sensitive to the selected cutoff, and the “opti-
mal” threshold may differ across datasets, even
for the same biomarker. In contrast, for a clini-
cally implemented biomarker or diagnostic test,
establishing and validating a single, pre-spec-
ified threshold that can be applied consistently
across laboratories and settings is a strength
rather than a limitation. Accuracy and Error may
also be misleading in imbalanced datasets, which
are frequent in medical studies where patient
groups are much smaller than control groups
(healthy individuals). Their practical application
in current medical research often leads to the
"Accuracy Paradox,” particularly in imbalanced
datasets. For instance, in rare disease screen-
ing where pathology prevalence is low (e.g., 1%),
a naive classifier predicting all patients as healthy

achieves 99% accuracy but fails clinically due to
0% sensitivity. This phenomenon is frequently
observed in large-scale health record analyses,
where neglecting metrics like Balanced Accura-
cy or G-mean can obscure a model's inability to
detect the minority class of interest [25]. Positive
predictive value (PPV) and negative predictive
value (NPV) are often more clinically informa-
tive in these settings because they quantify the
probability of disease given a test result; howev-
er, they are strongly dependent on disease preva-
lence, which limits their transportability between
populations.

Threshold metrics, by contrast, offer great-
er versatility. These metrics can be determined
regardless of the type of data on which the mark-
er was measured. It is possible to decide on both
quantitative and qualitative data, structured and
binary data. The simplicity of calculating and
interpreting these metrics is also essential. For
instance, utilising a confusion matrix facilitates
straightforward computation of various per-
formance measures (as shown in Table 1) for
BIRADS with the cut-off shown in Table 2.

As outlined in Figure 6, these metrics are the
primary choice only when the core task is binary

Journal of Medical Science 2025 December;94(4)
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Table 2. The calculation results obtained for the confusion matrix presented in Figure 1, together with their interpretation

Threshold Metric

Accuracy

Calculations and Conclusions
(880 +90) / 1000 = 0.97
97% of individuals were classified correctly
Error (10+20)/1000=0.03
3% of individuals were classified incorrectly
90/(10+90)=0.9
90% of sick individuals were correctly classified

Sensitivity (Recall or
True Positive Rate)

Specificity 880/ (20 +880) = 0.98
98% of healthy individuals were correctly classified
G-mean sqrt(0.9 + 0.98) = 0.94
Mean sensitivity and specificity is 94%
PPV (Precision) 90/ (20 +90) = 0.82

82% of individuals with a positive result (BIRADS>=4) were actually sick.
NPV 880/(10+880) = 0.99
99% of individuals with a negative result (BIRADS < 4) were actually healthy.

F1-score 2+((0.82+0.9)/(0.82+0.9)) = 0.86
0.86 indicates a very good balance between precision and recall.
F2-score F2 score = (1+242) » ((0.82 * 0.9) / ((2*2 * 0.82) + 0.9)) = 0.88
With the assumption that recall is twice as important as precision, we still point out that BIRADS
classifies fairly accurately.
DOR (90/10)/(20/880) = 396

388

An individual with a positive test result is 396 times more likely to have the disease compared to
someone with a negative test result.

Mcc ((90+880)-(10+20))/sqrt((90+20)+(90+10)(880+20)*(880+10)) = 0.842

0.842 indicates a strong positive correlation and a substantial agreement between BIRADS and reality.

Kappa (Cohen's Kappa

2+(90+880-10+20)/((90+20)+(20+880)+(90+10)+(10+880)) = 0.84

Coefficient)

Agreement for classification between BIRADS and reality after taking into account the agreement.

classification, and the chosen threshold is fixed
and clinically validated.

Threshold Optimisation: Selecting the Optimal
Cut-off Point

The selection of an optimal cut-off point is cru-
cial for threshold-based classification metrics
such as Sensitivity, Specificity, and Accuracy.
The choice of threshold directly impacts the clas-
sifier's performance and its clinical utility. While
a fixed threshold may be appropriate in some
cases, optimal threshold selection is often nec-
essary to balance false positives and false nega-
tives effectively. Several methods exist for deter-
mining the best threshold, including Youden's
Index, cost-benefit analysis, and clinically rele-
vant decision-making frameworks.

Journal of Medical Science 2025 December;94(4)

Youden'’s Index: Maximising Sensitivity and
Specificity

Youden's Index is one of the most commonly
used methods to select an optimal threshold. It
is defined as:

] = Sensitivity + Specificity - 1

The optimal threshold is the point at which
Youden's Index is maximised, meaning it provides
the best trade-off between true positive rate and
actual negative rate. This method is widely used
in diagnostic tests where equal importance is
placed on detecting disease (high Sensitivity)
and avoiding misclassification of healthy individ-
uals (high Specificity).



Cost-Benefit Analysis: Accounting for Clinical
Consequences

In many real-world applications, the costs associ-
ated with FP and FN classifications are not equal.
A cost-benefit analysis helps determine a thresh-
old that minimises the overall impact of classi-
fication errors. This approach assigns a weight
or cost to each type of error based on its clinical
consequences. The optimal threshold is the one
that minimises the expected total cost, which is
calculated as:

Total Cost = (CFP x FP Rate) + (CEFN x FN Rate)

Where CFP and CFN represent the rela-
tive costs of false positives and false negatives,
respectively, for example, in cancer screening,
a false negative (missed diagnosis) may have
a significantly higher price (delayed treatment)
than a false positive (leading to additional but
unnecessary testing).

Clinically Relevant Decision-Making Frameworks
Beyond mathematical optimisation, clinical deci-
sion-making frameworks integrate real-world
impact into threshold selection. For instance, in
sepsis prediction models, a lower threshold may
be preferred to increase early detection rates,
even at the cost of a higher false-positive rate.
Conversely, in cardiac risk stratification, a stricter
threshold may be needed to prevent unnecessary
interventions.

One example is the Net Benefit Approach,
which considers both the relative utility of true
positives and the harm of false positives in medi-
cal decision-making. This approach is frequently
used in risk-based screening guidelines.

Ranking Metrics
Receiver operating characteristic (ROC) and pre-
cision-recall curves are standard methods for
evaluating classifier performance. They enable
comparison of different diagnostic parameters
(or classification models), regardless of the deci-
sion threshold. We adjust the threshold by clas-
sifying test results as positive (sick) or negative
(healthy) to derive these curves (see Figure 4). We
then construct a confusion matrix to plot the ROC
and PR curves for each threshold.

The ROC curve is based on Sensitivity (True
Positive Rate, TPR) and a value of 1 1-Specifici-

ty (False Positive Rate, FPR = 1-Specificity). For
different thresholds, points are plotted on the
graph, creating an ROC curve that shows how the
test balances between Sensitivity (Y-axis) and
1-Specificity (X-axis) as the classifier's thresh-
olds are successively applied. The PR curve is
based on Precision (PPV) and Recall (Sensitivity).
We plot points for different thresholds, creating
a PR curve that shows how the test balances Pre-
cision (Y-axis) and Recall (X-axis) as a function
of the classifier's successive tapping thresholds.

Although each of these metrics is based
on successive cut-off points (thresholds) and
successive confusion matrices, they take into
account slightly different aspects of the assess-
ment of classification quality and have distinct
advantages and disadvantages (see Table 3)

The widespread use of ROC curves is support-
ed by the development of statistical tests to assess
the significance of the AUC and to compare ROC
curves, such as the DeLong method and the Han-
ley-McNeil test [26]. Additionally, techniques such
as Youden's method facilitate the determination of
optimal cutoff points based on ROC curves [26]. It
is critical to distinguish two properties: while AUC
(ROC) is robust in the sense that its value is math-
ematically independent of changes in class prev-
alence (resampling), it can be highly misleading
or overly optimistic in imbalanced settings. This
"optimism" stems from the fact that AUC (ROC)
treats all false alarms (FP) and missed diagnoses
(FN) equally, regardless of the actual costs and the
clinical dominance of the minority class.

Consider a dataset with a 99:1 ratio of negative
to positive examples. A conservative, non-trivial
classifier might achieve very high Specificity (low
FPR) but low Sensitivity TPR), leading to a mis-
leadingly good AUC(ROC). This optimism arises
because the ROC curve does not reflect the low
overall prevalence of the positive class. To avoid
this misleading optimism, a different metric, such
as PR curves, is often preferred.

There are several ways to address this prob-
lem. One is to use a different metric, such as Pre-
cision-Recall curves. This metric is more sensi-
tive to class distribution and can give a more
accurate picture of a model's performance when
the minority class is the sick class. See the exam-
ples of L-selectin and P-selectin in the detection
of psoriasis, and the example of heart rate in the
detection of coronary disease (see Figure 5).
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Threshold Metrics

High accuracy can mislead in imbalanced datasets. In
such cases, the classifier may favor the majority class.
Disease prevalence worsens this, as rarer diseases
skew accuracy.

Easy to understand, it gives a general idea of the
correctness of the classifier.

Similar to Accuracy, it can be confusing in imbalanced

Easy to understand, tells us the total error of the datasets (when classes are imbalanced).

classifier.

it focuses on identifying sick individuals, regardless of can give false positives, leading to unnecessary

. o Only evaluates classification for the sick group,
Imbalanced classes has less impact on Sensitivity, as neglecting the healthy group. A high-sensitivity test
their size in the population. additional testing, treatment and stress for the patient.

Focuses solely on classifying the healthy group,
ignoring the sick group. A test with high Specificity may
fail to detect some cases of disease (false negatives),
which is particularly dangerous when the condition
requires rapid intervention.

Considers both sensitivity and specificity, it gives a Extreme values in the confusion matrix, particuraly with
general idea of the correctness of the classifier - a asmall sample size, heavily affect the G-mean. If the

Imbalanced classes has less impact on Specificity, as
it focuses on identifying healthy individuals,
regardless of their size in the population.

good choice for balanced datasets. classes are imbalanced and the Sensitivity is significantly
different from the Specificity, the G-mean may not
accurately reflect the clasifier's overall preformance.

Determines the probability of having a true disease PPV In imbalanced datasets, it can be confusing. PPV rises
with a positive result: This is especially important for Precision with prevalence since more people are sick, increasing
expensive or invasive diagnostic procedures or the likelihood of a positive test indicating the true

treatments. disease presence.

Determines the probability of not having the disease It can be confusing in imbalanced datasets. NPV
- . it -3 NPV : A
with a negative result: This is especially important decreases as prevalence increases, because with higher
when a false negative result could delay or prevent @ prevalence, there is a higher risk that a negative test
proper diagnosis and treatment. result is a false negative.

Combines Sensitivity (Recall) and Precision . .
{Positive Predictive Value) into a single value, F-;njj:::re Itignores TN (True Negatives) results completely. In

giving a general idea of the correctness of the SOW:?nczsretz’n(g?2?2?;55:{‘&?&&? t;lrerrgsltwrgﬁy be
classifier - a good choice when the class of the P gory )
event is more important.

Combines Sensitivity and PPV with weighting using the B The primary drawback is the difficulty in selecting the
parameter in the F-measure score. Adjusting this demands ~ JEESEY  appropriate Beta value. The choice is subjective and depends on
carefulness and possible experimentation, particularly a deep understanding of the medical context and the relative
when the event class is of interest and less numerous. costs of FP and FN. An incorrect choice of Beta can lead to

optimizing a metric that does not reflect the true objective.

A concise quotient for easy understanding, DOR Prone to extreme value influence, especially in small
incorporating all diagnostic test outcomes (TP, FP, TN, datasets. Very high or low values in TP, TN, FP, or FN
FN). Offers a broad assessment of test performance. l can heavily impact the DOR score. May not accurately

Great for balanced dataset and datasets with little reflect the true test-disease relationship.
imbalance
Considers TP, FP, TN, and FN, offering a holistic MCC Small datasets can lead to the influence of extreme

perspective. Ideal for situations where both AN values, affecting the MCC score. Very high or low
sensitivity and specificity matter. Great for balanced mt values in a class (TP, TN, FP, or FN) may distort the true

dataset and datasets with little imbalance. relationship between the test and the disease.

Kappa considers random concordance, separating it
from true concordance. This distinction enhances
reliability compared to simple accuracy.

Kappa may depend to some extent on data balancing,
but its dependence is weaker than that of accuracy,
sensitivity, and specificity.

Figure 3. Advantages and disadvantages of individual Threshold Metrics.
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Figure 4. Outcomes of cut-off point (threshold) selection for a continuous biomarker as a potential classifier. The field sizes
obtained at the indicated cutoff point yield four quantities: TP, TN, FP, and FN, which are entered into the confusion matrix.

Table 3. Advantages and Disadvantages of Ranking Metrics.

Ranking Metrics

Advantages

Disadvantages

TPR

ROC

FPR

Visual Representation: ROC curves provide a visual
representation of the performance of a classification
model across all possible thresholds.
Comprehensive Performance Summary: AUC
(ROC) is a single metric that summarizes the overall
performance of a diagnostic test. Represents the
probability that a randomly chosen positive case will
receive a higher test score than a randomly chosen
negative case.

Threshold-Independent Comparison: Two or
more ROC curves can be compared directly even if they
are derived from different variables with different
units.

Independence from Prevalence: The ROC
coordinates (TPR, FPR) are mathematically
independent of the class distribution (prevalence),
making the AUC (ROC) value determinable even if the
prevalence changes

Limited Clinical Interpretation: AUC (ROC), despite
its popularity, may not directly translate into
meaningful information for clinicians, patients, or
healthcare providers. A test with an AUC of 0.9 might
be considered "better” than one with an AUC of 0.8, but
this difference may not have a significant impact on
patient outcomes or treatment decisions.

Focus on All Thresholds: AUC (ROC) considers the
performance of a test across all possible thresholds,
including those that may not be clinically relevant or
useful in practice. This can lead to an overemphasis on
thresholds that are not practical or important for
decision-making.

Can be misleading in imbalanced settings: This
is because AUC (ROC) gives equal weight to TPR and
FPR, regardless of the actual prevalence. In highly
imbalanced datasets, the resulting high AUC may mask
poor performance on the minority class, as the FPR
remains small due to the dominant TN count. This
often leads to a misleadingly high AUC (ROC) when
compared to AUC (PR)

precision

PR

recall

Visual Representation: PR curves provide a visual
representation of the performance of a classification
model at different Recall levels. This allows for a quick
and intuitive understanding of the model's ability to
identify positive cases (e.qg., disease presence) while
considering the trade-off between Precision and Recall
Focus on Positive Class: PR curves specifically
focus on evaluating the performance of a model in
identifying positive cases (e.g., disease presence),
making them particularly useful in scenarios where the
detection of these cases is of primary importance.
They provide precise information about the model's
ability to correctly classify positive instances, even
when they are rare or difficult to identify.

Focus on Positive Class: PR curves primarily focus
on evaluating the performance of a model in
identifying positive cases (e.g., disease presence),
disregarding the number of true negative results (e.g.,
disease absence). This can make them less suitable for
tasks where both positive and negative classifications
are equally important.

Neglect of Healthy Individuals: PR curves do not
directly assess the model's ability to correctly classify
healthy individuals (true negatives).

Sensitivity to Data Imbalance: This sensitivity
makes it challenging to compare PR curves from
different studies or datasets with varying class
imbalances.
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Methodological note for illustrative
examples

To ensure consistency, calculations for the pro-
vided examples (L-selectin, P-selectin, Heart
Rate) were performed using individual probabili-
ties obtained from a univariate Logistic Regres-
sion model trained on the respective variable
(Table 6, Figure 5). Ranking metrics (AUC-ROC
and AUC-PR) and probability metrics (Brier
Score, Log Loss) were calculated directly from
these continuous outputs without applying any
arbitrary classification thresholds. The R code
used to perform these calculations is available on
GitHub  (https://github.com/marpatra/Metrics.
Selectins-HR)

The ROC curve for L-selectin lies along the
line of identity. At the 0.5 level with a balanced
dataset (50:50 ratio), the prevalence line is at
0.5 on the PR curve, indicating that L-selectin is
a minimal-skill classifier (see Figure 5). While the
AUC(PR) of 0.523 is technically above the random
expectation baseline of 0.50, the value is negligi-
bly close to the no-skill classifier line, justifying
its practical classification as non-discriminatory.
The ROC and PR curves for P-selectin indicate
that low levels of this selectin have discrimina-
tory potential; at high levels, the curves lie along
a line indicating no skill.

For the balanced cardiac dataset, we obtained
ROC and PR curves, yielding high fields and their
plots, and also demonstrating strong classifi-
cation performance for the heart rate variable.
However, for the imbalanced data, the AUC(ROC)
value of 0.776 is higher than that for the balanced
data (0.745). This finding is due to the substantial
increase in the TN, which pushes the FPR close to
zero across many thresholds. This results in the
ROC curve appearing overly optimistic. In sharp
contrast, the AUC(PR) for the same imbalanced
data drastically drops to 0.494 (from 0.704 in the
balanced setting). This low AUC (PR) indicates
the classifier's weakness in the minority class
(patients). Specifically, the optimistic AUC(ROC)
masks a clinically unacceptable drop in PPV,
where many optimistic predictions are actu-
ally FP relative to the few TP available. In clini-
cal practice, this would mean a high rate of false
alarms, wasting resources and causing unneces-
sary patient anxiety, a critical factor missed by
the ROC curve alone.
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To mitigate imbalance during model training,
techniques such as SMOTE (Synthetic Minor-
ity Over-sampling Technique) or undersampling
can be employed to balance class distribution.
Alternatively, cost-sensitive learning can be used
to assign higher penalties to misclassifying the
minority class.

Figure 6 directs the user to these ranking met-
rics when the primary goal is classification, but
when the data are imbalanced or a threshold-ag-
nostic comparison between models is required.

Real-World Applications: Robust Metrics and
Resampling Genomic Studies (Metric Selection):
As highlighted in recent bioinformatics literature,
standard metrics like F1-score can be misleading
when the 'negative’ class is biologically signifi-
cant. Chicco and Jurman [21] demonstrated that,
in genomic binary classification, the F1-score
remained optimistically high even when the mod-
el failed to detect negative samples correctly. In
contrast, the Matthews Correlation Coefficient
(MCC) declined markedly in these scenarios,
indicating the model's poor performance. Thus,
for omics data, MCC is recommended over F1 as
a more truthful performance indicator.

Pandemic Surveillance (Data Resampling):

In scenarios such as a COVID-19 diagnosis, data-
sets are often skewed toward negative cases.
Research on radiomics applied to COVID-19 [2]
has shown that models trained on imbalanced
internal cohorts typically exhibit high Sensitiv-
ity but suffer a sharp decline in Specificity when
validated externally due to overfitting. To miti-
gate this, techniques such as SMOTE (Synthetic
Minority Over-sampling Technique) have been
successfully employed to balance training sets,
preventing the model from becoming biased
toward the majority class (healthy individu-
als) and ensuring reliable detection of infected
patients.

Robust Metrics and Resampling

Probabilistic Metrics

As shown in Figure 6, these metrics become the
priority when the core modelling objective is the
prediction of a trustworthy probability value (P),
essential for accurate clinical risk assessment
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Figure 5. ROC and PR curves for balanced data: no-skill classifier using the example of L-selectin in psoriasis detection, partial-
ly-skill classifier using the example of P-selectin in psoriasis detection, skilful classifier using the example of heart rate in coronary
disease detection for balanced data; partially skilful classifier using the example of heart rate in coronary disease detection for imbal-
anced data. Calculations were performed using individual probabilities obtained from a logistic regression model trained on the input

Precision (PPY)

Precision (PPV)

Precision (PPV)

Precision (PPV)

PR Curve - L-selectin
AUC-PR =0.523

08

00 0.2 D4 06 08 10
Recall (Sensitivity)

PR Curve - P-selectin
AUC-PR =0.726

10
038
06
alence = 0.5
04
0.2
0.0
0.0 02 D4 08 0.8 1.0
Recall (Sensitivity)
PR Curve - Cardio (Balanced)
AUC-PR =0.704
10
0.8
06
Prevalence = 0.46
04
02
0.0
0.0 02 D4 06 08 1.0
Recall (Sensitivity)
PR Curve - Cardio (Imbalanced)
AUC-PR =0.494
10
0.8
06
04
Prevalence = 0.2
el R R R e el R
0.0
0.0 02 04 06 0.8 1.0

Recall (Sensitivity)

variable. The results obtained without using the logistic regression model are identical.
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When to Prefer Brier Score and Log Loss
Brier Score and Log Loss are essential metrics for
evaluating probabilistic models, particularly when
the focus is on the accuracy of predicted prob-
abilities rather than binary classifications. These
metrics are preferred over threshold-based met-
rics (e.g., accuracy, F1-score, sensitivity, speci-
ficity, ROC curves, and PR curves) in the following
scenarios:

1. Probabilistic Models: When using models
such as logistic regression, neural networks,
or Bayesian classifiers, which output prob-
abilities rather than binary predictions. These
metrics are particularly suited for assessing
the quality of probability estimates, which are
often more informative than binary decisions
in medical applications.

2. Calibration Assessment: When evaluating
how well the predicted probabilities align with
actual outcomes. For example, a well-cali-
brated model predicting a 30% risk of an event
should observe the event occurring approxi-
mately 30% of the time. Calibration is critical
in clinical decision-making, where accurate
probability estimates are necessary for risk
stratification and treatment planning.

3. Sensitivity to Small Errors: When the model's
performance depends on accurately predict-
ing probabilities, especially for rare events or
imbalanced datasets. Log Loss, in particular,
penalises overconfidence in incorrect predic-
tions, making it a valuable tool for training and
fine-tuning probabilistic models.

Evaluation of Continuous Probabilities: The
Two-Stage Process
The evaluation of a diagnostic test often involves
a critical two-stage process that requires different
metrics: Stage 1: probability prediction (calibration),
and Stage 2: final classification (thresholding).
Stage 1 metrics, such as the Brier Score and
Log Loss, assess the quality of the model's raw
probability output (P) before any decision thresh-
old is applied. They quantify the model's calibra-
tion, ensuring that if the model predicts a prob-
ability P, the outcome occurs approximately P per
cent of the time. This is critical because, for clini-
cal decision-making, the expected probability P
must be trustworthy.

The importance of calibration: an illustrative
example
Metrics such as AUC (ROC) are primarily ranking
metrics; they assess only the model's ability to
correctly order positive cases above negative cas-
es, regardless of the actual probability values. Two
models can have identical AUC values but vast-
ly different calibration quality. Consider a small
dataset of 10 cases (4 positive (1), 6 negative (0)).
Two hypothetical models, Model M1 (well-cali-
brated) and Model M2 (poorly-calibrated), pro-
duce the following probabilities (see Table 4):
Despite providing different probability scores,
the rank order of cases is identical for both mod-
els. Consequently, both Model M1 and Model M2
achieve a perfect AUC(ROC) of 1.0. Based solely
on the AUC, we would conclude that both models

Table 4. Comparison of Ranking (AUC) and Probabilistic (Brier Score) Metrics for Two
Models with Identical Ranking Ability but Different Calibration (Numerical Example). The R
code used to perform these calculations is available on GitHub (https://github.com/mar-

patra/Metrics.Selectins-HR)

Case True label M1 (calibrated prob.) M2 (uncalibrated prob.)

1 1 0.60 0.90
2 1 0.55 0.85
3 1 0.40 0.70
4 1 0.30 0.60
5 0 0.25 0.55
6 0 0.15 0.40
7 0 0.10 0.30
8 0 0.05 0.20
9 0 0.02 0.10
10 0 0.01 0.05
Summary AUC-ROC 1.00 1.00

Brier Score 0.09 0.13
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are perfect classifiers. However, when assess-
ing calibration using the Brier Score (BS), the dif-
ference becomes clear: BS(M1) = 0.089, BS(M2)
= 0.131. Since a lower Brier Score indicates bet-
ter performance, Model M1 is significantly bet-
ter calibrated than Model M2. Model M2 system-
atically underpredicts the risk for positive cases
(e.g., predicting 0.60 instead of 0.90 for Case 1).
Using Model M2 in a clinical setting would lead
practitioners to be consistently overconfident that
patients are not sick when a moderate probability
is predicted, resulting in poorer clinical decisions
despite the model's perfect AUC ranking.

For a more comprehensive visualisation and
assessment of calibration, it is standard prac-
tice to use Calibration Plots or Reliability Dia-
grams alongside Brier Score and Log Loss. These
graphical tools compare predicted probabilities
with observed frequencies across multiple bins,
providing an intuitive way to identify system-
ic biases in the probability output (e.g., over- or
underestimation).

Stage 2 involves applying a decision threshold
(cutoff point) to the calibrated probability output
to produce the final binary classifications (e.qg.,
'sick’ or 'healthy’). At this stage, threshold-depen-
dent metrics such as Sensitivity, Specificity, PPV,
NPV, F1-Score and Accuracy are used to assess
the final classification performance based on the
chosen trade-off.

Practical Applications in Medicine

Prognostic Models in Oncology:

In cancer survival prediction, binary classification
(alive/dead) is often insufficient; clinicians require
the survival probability to weigh treatment risks.
Steyerberg et al. [27] emphasise that a model can
have high Accuracy but poor calibration (e.g.,
consistently predicting 60% risk for patients who
actually have a 40% risk). In such cases, the Brier
Score is the superior metric because it quanti-
fies the distance between the predicted probabil-
ity and the actual outcome. A lower Brier score
is associated with more reliable risk estimates,
which are crucial for deciding whether to admin-
ister toxic chemotherapy.

Cardiovascular Risk Scoring:
Similarly, in predicting 10-year cardiovascu-
lar event risk (e.g., the Framingham Risk Score),

Log Loss is widely used to penalise confident but
incorrect predictions. If a model predicts a 99%
chance of 'no heart attack’ for a patient who sub-
sequently suffers one, Log Loss applies a heavy
penalty, forcing the algorithm to be more cau-
tious and realistic in its probability estimates
during training."

By incorporating Brier Score and Log Loss
into the evaluation process, researchers and cli-
nicians can ensure that their models provide
not only accurate classifications but also reli-
able probability estimates, ultimately improving
patient outcomes.

Implementations in Practice

Implementations of these measures are less
widely available than other performance met-
rics, such as Accuracy or Precision. This can
make it challenging to use these metrics in some
programming environments. It is important to
emphasise that Brier Score and Log Loss have
strengths and weaknesses, and the choice of
appropriate metrics depends on the specifics of
the task (see Table 5).

Depending on the software used, the values
obtained for these measures may vary minimal-
ly. In our examples (L-selectin and P-selectin for
psoriasis detection, and heart rate for coronary
disease detection), we first fitted simple logistic
regression models with the respective variable
as the predictor, yielding an individual predicted
probability of the outcome for each patient. Brier
Score was then calculated as the mean squared
difference between these case-wise predicted
probabilities and the observed outcomes, and
Log Loss was computed using the exact indi-
vidual probabilities. The results for calculations
performed in R and in Python are presented in
Table 6.

Validation

The data used to build and assess a classifier's
quality is called learning or training data. In the
following steps, each classifier, whether sim-
ple (based on a single variable) or complex, like
a logistic regression model, neural network, or
decision tree, should be validated with indepen-
dent data, called test or validation data. Repeat-
ed testing of the same classifiers or models on
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Table 5. Advantages and disadvantages of the chosen Probability Metrics.

Probability Metrics Advantages Disadvantages

Brier score Interpretability: Brier Score is easier to interpret No penalty for overconfidence: does not penalize
than Log Loss. It repre sents the mean squared models for being too confident but incorrect in their
difference between the predicted probabilities predictions. This can lead to preferring models that
and the actual outcomes (0 or 1). A lower Brier predict outstanding high/low values, even if they are
Score indicates better model performance, wrong.
making it intuitive to understand how well the
model performs on average. In the case of extremely imbalanced data, where one

class accounts for less than 1% of observations, may

Robustness to calibration issues: Even if not reflect the true effectiveness of the model.

amodel's predicted probabilities are not perfectly
aligned with the actual outcomes, Brier Score can
still provide a reasonable assessment of

performance.
Log Loss Suitable for training models: Minimizing Log  Limited interpretability: Log loss is difficult to

Loss during training encourages the model to interpret in real-world terms. The metric is based on

learn accurate probability estimates. logarithmic values, which makes it difficult to interpret
intuitively.

More sensitive to probability differences:

Log Loss is more sensitive to differences in Assumes well-calibrated probabilities: Log loss

predicted probabilities compared to Brier Score.  works best when a model predicts probabilities with high

This allows it to better distinguish between Accuracy. If a model is inaccurate or poorly calibrated,

models that make subtle but significant log loss may not be a reliable measure of performance.

improvements in probability estimation. This can lead to preferring models that underpredict
positive class probabilities, even if they better identify

Discourages overconfidence: Log Loss actual outcomes.

heavily penalizes models that are overly confident

in their wrong predictions. This can be beneficial In the case of extremely imbalanced data, where one
for tasks where assigning the correct probabilities class accounts for less than 1% of observations, may
is crucial. not reflect the true effectiveness of the model.

Table 6. Brier Score and Log Loss for balanced data for: no-skill classifier using the example of L-selectin in psoriasis detection,
partially-skilled classifier using the example of P-selectin in psoriasis detection, skilful classifier using the example of heart rate in
coronary disease detection; and for imbalanced data for a partially skilful classifier using the example of heart rate in coronary dis-
ease detection. Calculations were performed using individual probabilities obtained from a logistic regression model trained on the
input variable and a null model (without variables). Results were presented using the LogLoss function from the MLmetrics package
in R, and based on the LogisticRegression, log_loss, and NumPy functions from the scikit-learn and NumPy packages in Python. The
data used for these calculations, along with the functions necessary to perform them, are available at https://github.com/marpatra/
Metrics.Selectins-HR

Classifier Brier Score Log Loss
Python R Python R
=selectininpsoriasiss | 0.23050299261287152 0.230503 0.692726390827548  0.6927264

detection

e LBy partially 0.23457753518070662  0.2345775 0.656469675228019 0.6564697

detection skillful

heart rate in coronary skillful 0.22963327943711911 0.2296331 0.6517807033032978 0.65178
disease detection

heart rate in coronary ~ partially 0.22963327943711911 0.2296331 0.65178 0.65178
disease detection skillful

*The R and Python implementations produce similar outputs with slight differences due to numerical precision, optimisation algo-
rithms, library settings, and convergence criteria.
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a new dataset will indicate how well the original
predictive model and its classifiers perform on
new, unseen data. All listed metrics can be cal-
culated on both the training set, to assess the
current quality of classification and prediction,
and on new validation and test datasets, to gen-
eralise this quality to future data on which it may
be used.

Model Validation and Overfitting

Model validation is a critical step in ensuring
the reliability and generalizability of classifica-
tion models. Overfitting occurs when a model
performs exceptionally well on the training data
but fails to generalise to new, unseen data. This
typically happens when the model learns noise or
specific patterns in the training data that do not
apply to the broader population.

Techniques to Prevent Overfitting
k-Fold Cross-Validation: In k-fold cross-valida-
tion, the dataset is divided into k subsets (folds).
The model is trained on k-1 folds and validated
on the remaining fold. This process is repeated
k times, with each fold used exactly once as the
validation set. The results are averaged to provide
an estimate of model performance. For instance,
k-fold cross-validation is essential for obtaining
a stable estimate of AUC(ROC) for the Heart Rate
classification model, ensuring that the report-
ed performance is not specific to a single data
split. Leave-One-OQut Cross-Validation (LOOCV):
LOOCV is a special case of k-fold cross-valida-
tion in which k equals the number of samples in
the dataset. Each sample is used once as a vali-
dation set, while the remaining samples form
the training set. This method is beneficial for
small datasets, as it maximises the use of avail-
able data. This technique could be employed to
rigorously estimate the Sensitivity and Specific-
ity of the BI-RADS scale classifier (e.g., at the >4
threshold) when validating its performance in
small, limited patient cohorts.

Bootstrap Methods: Bootstrap resampling is
a resampling technique used to assess the vari-
ability and internal stability of model performance
within the same underlying population (e.g., the
same dataset). By repeatedly drawing samples
with replacement from the original data and refit-
ting or re-evaluating the model, bootstrap meth-
ods provide estimates of the uncertainty and opti-

mism of performance measures (e.g. AUC, Brier
Score). However, bootstrap resampling cannot
replace evaluation in genuinely different patient
populations. Assessment of model performance
across settings or populations requires exter-
nal validation on separate datasets, rather than
resampling from a single cohort. Bootstrapping is
highly useful for assessing the stability and con-
fidence intervals of the AUC(PR) and Brier Score
values reported for the selectin and heart rate
models, providing a measure of how much these
metrics might vary across different potential
patient samples, and thus detecting overfitting.

Implications for classification Metrics:
practical examples

Validation techniques are not merely procedur-
al steps; they often reveal critical flaws in met-
ric interpretation that theoretical calculations on
training data miss.

Consider a study that employs high-dimen-
sional genomic data to predict cancer subtypes
(e.g., the MAQC-II study [28]). A classifier might
achieve an Accuracy of 98% and an AUC of 0.99
on the training set due to the model memoris-
ing noise (overfitting). However, when subjected
to 10-fold cross-validation, the AUC might drop
drastically to 0.60. This discrepancy serves as
a red flag that the initial high metrics were illu-
sory.

Similarly, in radiomics studies for COVID-19
detection [2], models often show high Sensitiv-
ity on training cohorts. However, external vali-
dation on data from a different hospital typically
indicates a significant drop in Specificity, result-
ing in a high number of False Positives. This hap-
pens because the model may learn scanner-spe-
cific artefacts rather than disease pathology. In
such cases, relying solely on training F1-scores
would be misleading; cross-validation highlights
the need for metrics such as the Matthews Cor-
relation Coefficient (MCC), which is more robust
to such shifts in confusion-matrix distributions
than the F1-score or Accuracy.

Practical Considerations in Medical
Applications

In medical applications, where the stakes are
high, ensuring that a model generalises well to
new data is crucial. Overfitting can lead to over-
ly optimistic performance estimates, poten-
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tially resulting in the deployment of unreliable
diagnostic tools. Proper validation techniques
help mitigate this risk, ensuring that the mod-
el's performance is consistent across different
datasets and populations. For example, a model
trained to predict sepsis must be validated on
diverse patient cohorts to ensure its reliability in
real-world clinical settings.

Discussion

Summary of Metric Strengths and
Weaknesses within the Clinical Context

No single metric is universally optimal. Their
selection must reflect the clinical context, priori-
ties, and data characteristics.

Holistic Metrics: Accuracy (ACC) and Error
Rate are useful when data are balanced, and mis-
classification costs are symmetric. Cohen’s Kap-
pa corrects these scores for chance agreement
[27]. Matthews Correlation Coefficient (MCC)
combines holistic assessment with robustness to
class imbalance, making it a recommended met-
ric in projects regulated by the U.S. FDA [29,30].
The Diagnostic Odds Ratio (DOR) summarises the
overall discriminatory effectiveness of a test. The

ROC curve and the area under it (AUC) are used
to assess a test's ability to distinguish between
groups across various thresholds [31-33]. The PR
(Precision-Recall) curve is more informative than
the ROC curve for detecting rare events [34]. The
selection of an optimal cutoff point can be per-
formed using Youden's index or, better adapted
to clinical realities, the tangent (cost) method,
which explicitly incorporates the relative costs of
FP and FN and prevalence.

Class-Oriented Metrics: As indicated above,
Sensitivity, Specificity, PPV, and NPV are funda-
mental, and their relevance depends on the clini-
cal objective. The F1 score (and its variants) is
instrumental in settings with class imbalance, as it
combines precision (PPV) and sensitivity (recall).

Calibration Assessment Metrics: Brier Score
and Log Loss assess the accuracy of estimat-
ed probabilities. The Brier Score is easier to
interpret, whereas log loss is more sensitive to
minor errors and is commonly used in machine
learning.

Guidelines for Metric Selection and Their
Clinical Rationale

The prevalence of a disease has a fundamental
impact on the interpretation of diagnostic test
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Figure 6. Graph facilitating the selection of a metric depending on the purpose for which it is determined (assignment to classes, pre-
diction of probability of assignment to classes), type of data, validity or balancing of classes of events (sick) and no events (healthy).
While this graph helps establish the primary objective, in practice, it is common to use a combination of indicators to evaluate the

model's performance fully.
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results and the choice of evaluation metrics.
A structured selection framework, presented as
a decision tree (see Figure 6), comprises three
steps: the problem type (classification vs. predic-
tion), the type of target variable, and the relative
importance of classes for a given task.

The decision in the final step in medicine is
critically determined by the asymmetry of mis-
classification costs, which varies with the stage
of the diagnostic process. This is vividly illus-
trated in Figure 7, which presents the trade-off
in cancer screening. At the screening stage, the
primary goal is to rule out the disease, making
a False Negative (FN) — missing a sick patient —
the most critical error, as it delays potentially
life-saving treatment. Consequently, screening
tests are optimised for high Sensitivity and Nega-
tive Predictive Value (NPV). It is crucial to note,
however, that a positive screening result typically
triggers further confirmatory steps rather than
immediate aggressive therapy. At this subsequent
confirmatory diagnostic stage, the cost of a False
Positive (FP) — subjecting a healthy person to
invasive procedures and psychological distress —
becomes predominant. Therefore, confirmatory
tests must exhibit high Specificity and Positive
Predictive Value (PPV) to ensure that treatment
is administered only to those who genuinely need

it. In practice, minimising one type of error often
increases the other, and a common compromise
is to use balanced metrics such as the G-mean or
metrics from the F-score family.

A Critical Overview and Future Directions

A conscious selection of metrics — often involv-
ing a combination of several — is essential for
reliable evaluation. The metrics discussed thus
far represent established, mathematically rigor-
ous approaches to model assessment. However,
the field continues to evolve, driven by the need
for more intuitive, actionable, and human-centric
evaluation tools.

Classical metrics, together with consider-
ations of disease prevalence and the asymmet-
ric clinical costs of errors at different stages of
the patient pathway, enable the selection of mea-
sures that ensure a clinically sound and accurate
evaluation of diagnostic and predictive models.
The future of model evaluation in medicine, how-
ever, lies in the synergy between these traditional
foundations and the development of new tech-
niques necessary for deploying Al systems (e.g.,
Shapley Additive exPlanations [35], U-smile [36].
New methods are constantly being introduced,
and it was not possible to discuss and present
them in a single summary.

Cancer Diagnosis Involves Multiple Steps

‘ Risk of Missing
the Cancer

‘FN)

HARM: Delayed Diagnosis,
Cancer Undetected

Early Screening:
Focus on Sensitivity & NPV

Risk of False Alarm ‘
& Overtesting

FP

ARM: Unnecessary Tests,
Patient Anxiety

Confirmatory Tests:
Focus on Specificity & PPV

Figure 7. The harms caused by false negative and false positive prediction errors in the BI-RADS
scale. A False Negative (FN) is typically weighted more heavily than a False Positive (FP), as the pri-
mary goal is to identify all potential cases to avoid the risk of disease progression.

Journal of Medical Science 2025 December;94(4)




400

* class Classifiation

e rvaiaio I

Bi S Combination of
inary model's variables

( Are both classes important?

YES

F1 Score (FN, F2 Score (FN
FP equally madare-tely
costiy) castly)

Sensitivity (FN
costlyl, PPV (FP
costly)

Specificity (FP
costlyl, NPV (iN
costly)

ACC, error, G-mean,
DOR, Kappa, MCC

FO.5 Score (FFP
more costly)

Brier Score,
Logloss

Figure 8. Algorithm for statistical decision-making.
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